Spaces:
Sleeping
Sleeping
File size: 14,250 Bytes
d9272c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import torch
import torch.nn.functional as F
from lavis.common.registry import registry
from lavis.models.base_model import tile
from lavis.models.blip_models.blip import BlipBase
from lavis.models.blip_models.blip_outputs import (
BlipOutput,
BlipIntermediateOutput,
)
from lavis.models.med import XBertEncoder, XBertLMHeadDecoder
from lavis.models.vit import VisionTransformerEncoder
@registry.register_model("blip_vqa")
class BlipVQA(BlipBase):
"""
BLIP VQA models.
Supported model types:
- base: vqa model initialized with pre-trained BLIP base model on 115M image-text pairs after CapFilt; not fine-tuned.
- vqav2: fine-tuned BLIP base model on VQA v2.0 dataset.
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip_vqa", "vqav2")
>>> model = load_model("blip_vqa", "okvqa")
>>> model = load_model("blip_vqa", "aokvqa")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"vqav2": "configs/models/blip_vqav2.yaml",
"okvqa": "configs/models/blip_vqa_okvqa.yaml",
"aokvqa": "configs/models/blip_vqa_aokvqa.yaml",
}
def __init__(self, image_encoder, text_encoder, text_decoder, max_txt_len=35):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
self.text_decoder = text_decoder
self.max_txt_len = max_txt_len
def forward(self, samples):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
- text_input (list): A list of strings, each string is a question
- answer (list): A list of strings, each string is an answer
- weight (torch.Tensor): A tensor used to weigh each answer in the loss computation.
The shape of the tensor is (sum(n_answers),)
- n_answers (torch.Tensor): A tensor shape (batch_size,) containing the number of answers
for each question in the batch.
Returns:
A BlipOutput object containing loss and intermediate outputs,
see :class:`lavis.models.blip_outputs.BlipOutput` for more details.
Examples:
```python
>>> import torch
>>> from lavis.models import load_model
>>> model = load_model("blip_vqa")
>>> samples = {
... "image": torch.rand(2, 3, 480, 480),
... "text_input": ["What is this?", "What is that?"],
... "answer": ["cat", "cat", "dog"],
... "weight": torch.tensor([1.0, 1.0, 1.0]),
... "n_answers": torch.tensor([2, 1]),
... }
>>> output = model(samples)
>>> output.keys()
odict_keys(['intermediate_output', 'loss'])
>>> output.intermediate_output.keys()
odict_keys(['image_embeds', 'encoder_output', 'decoder_output', 'decoder_labels'])
```
"""
encoder_output, image_embeds = self.forward_encoder(samples)
loss, decoder_output, decoder_targets = self.forward_decoder(
samples=samples, encoder_out=encoder_output
)
return BlipOutput(
loss=loss,
intermediate_output=BlipIntermediateOutput(
image_embeds=image_embeds,
encoder_output=encoder_output,
decoder_output=decoder_output,
decoder_labels=decoder_targets,
),
)
def forward_encoder(self, samples):
questions = samples["text_input"]
questions = self.tokenizer(
questions,
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
questions.input_ids[:, 0] = self.tokenizer.enc_token_id
samples.update({"tokenized_text": questions})
image_embeds = self.visual_encoder.forward_features(samples["image"])
encoder_output = self.text_encoder.forward_automask(
tokenized_text=samples["tokenized_text"], visual_embeds=image_embeds
)
return encoder_output, image_embeds
def forward_decoder(self, samples, encoder_out, **kwargs):
answers = self.tokenizer(
samples["answer"], padding="longest", return_tensors="pt"
).to(self.device)
answers.input_ids[:, 0] = self.tokenizer.bos_token_id
answer_targets = answers.input_ids.masked_fill(
answers.input_ids == self.tokenizer.pad_token_id, -100
)
question_states = []
question_atts = []
question = samples["tokenized_text"]
question_output = encoder_out
for b, n in enumerate(samples["n_answers"]):
question_states += [question_output.last_hidden_state[b]] * n
question_atts += [question.attention_mask[b]] * n
question_states = torch.stack(question_states, dim=0)
question_atts = torch.stack(question_atts, dim=0)
answer_output = self.text_decoder(
answers.input_ids,
attention_mask=answers.attention_mask,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
labels=answer_targets,
return_dict=True,
reduction="none",
)
loss = samples["weight"] * answer_output.loss
bsz = samples["image"].size(0)
loss = loss.sum() / bsz
return loss, answer_output, answer_targets
def predict_answers(
self,
samples,
num_beams=3,
inference_method="rank",
max_len=10,
min_len=1,
num_ans_candidates=128,
answer_list=None,
**kwargs
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
- text_input (str or [str]): String or a list of strings, each string is a question.
The number of questions must be equal to the batch size. If a single string, will be converted to a list of string, with length 1 first.
num_beams (int): Number of beams for beam search. 1 means no beam search.
inference_method (str): Inference method. One of "rank", "generate".
- If "rank", the model will return answers with the highest probability from the answer list.
- If "generate", the model will generate answers.
max_len (int): Maximum length of generated answers.
min_len (int): Minimum length of generated answers.
num_ans_candidates (int): Number of answer candidates, used to filter out answers with low probability.
answer_list (list): A list of strings, each string is an answer.
Returns:
List: A list of strings, each string is an answer.
Examples:
```python
>>> from PIL import Image
>>> from lavis.models import load_model_and_preprocess
>>> model, vis_processors, txt_processors = load_model_and_preprocess("blip_vqa", "vqav2")
>>> raw_image = Image.open("docs/data/merlion.png").convert("RGB")
>>> question = "Which city is this photo taken?"
>>> image = vis_processors["eval"](raw_image).unsqueeze(0)
>>> question = txt_processors["eval"](question)
>>> samples = {"image": image, "text_input": [question]}
>>> answers = model.predict_answers(samples)
>>> answers
['singapore']
>>> answer_list = ["Singapore", "London", "Palo Alto", "Tokyo"]
>>> answers = model.predict_answers(samples, answer_list=answer_list)
>>> answers
['Singapore']
```
"""
assert inference_method in [
"rank",
"generate",
], "Inference method must be one of 'rank' or 'generate', got {}.".format(
inference_method
)
if isinstance(samples["text_input"], str):
samples["text_input"] = [samples["text_input"]]
assert len(samples["text_input"]) == samples["image"].size(
0
), "The number of questions must be equal to the batch size."
if inference_method == "generate":
return self._generate_answers(
samples, num_beams=num_beams, max_length=max_len, min_length=min_len
)
elif inference_method == "rank":
assert answer_list is not None, "answer_list must be provided for ranking"
num_ans_candidates = min(num_ans_candidates, len(answer_list))
return self._rank_answers(
samples, answer_list=answer_list, num_ans_candidates=num_ans_candidates
)
def _generate_answers(self, samples, num_beams=3, max_length=10, min_length=1):
encoder_out, _ = self.forward_encoder(samples)
question_output = encoder_out
question_states = question_output.last_hidden_state.repeat_interleave(
num_beams, dim=0
)
question_atts = torch.ones(question_states.size()[:-1], dtype=torch.long).to(
self.device
)
model_kwargs = {
"encoder_hidden_states": question_states,
"encoder_attention_mask": question_atts,
}
bsz = samples["image"].size(0)
bos_ids = torch.full(
(bsz, 1), fill_value=self.tokenizer.bos_token_id, device=self.device
)
outputs = self.text_decoder.generate(
input_ids=bos_ids,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
**model_kwargs
)
# collect answers
answers = []
for output in outputs:
answer = self.tokenizer.decode(output, skip_special_tokens=True)
answers.append(answer)
return answers
def _rank_answers(self, samples, answer_list, num_ans_candidates):
"""
Generate the first token of answers using decoder and select ${num_ans_candidates}
most probable ones. Then select answers from answer list, which start with the probable tokens.
Lastly, use the selected answers as the ground-truth labels for decoding and calculating LM loss.
Return the answers that minimize the losses as result.
"""
answer_candidates = self.tokenizer(
answer_list, padding="longest", return_tensors="pt"
).to(self.device)
answer_candidates.input_ids[:, 0] = self.tokenizer.bos_token_id
answer_ids = answer_candidates.input_ids
answer_atts = answer_candidates.attention_mask
question_output, _ = self.forward_encoder(samples)
question_states = question_output.last_hidden_state
tokenized_question = samples["tokenized_text"]
question_atts = tokenized_question.attention_mask
num_ques = question_states.size(0)
start_ids = answer_ids[0, 0].repeat(num_ques, 1) # bos token
start_output = self.text_decoder(
start_ids,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
return_dict=True,
reduction="none",
)
logits = start_output.logits[:, 0, :] # first token's logit
# topk_probs: top-k probability
# topk_ids: [num_question, k]
answer_first_token = answer_ids[:, 1]
prob_first_token = F.softmax(logits, dim=1).index_select(
dim=1, index=answer_first_token
)
topk_probs, topk_ids = prob_first_token.topk(num_ans_candidates, dim=1)
# answer input: [num_question*k, answer_len]
input_ids = []
input_atts = []
for b, topk_id in enumerate(topk_ids):
input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
input_ids = torch.cat(input_ids, dim=0)
input_atts = torch.cat(input_atts, dim=0)
targets_ids = input_ids.masked_fill(
input_ids == self.tokenizer.pad_token_id, -100
)
# repeat encoder's output for top-k answers
question_states = tile(question_states, 0, num_ans_candidates)
question_atts = tile(question_atts, 0, num_ans_candidates)
output = self.text_decoder(
input_ids,
attention_mask=input_atts,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
labels=targets_ids,
return_dict=True,
reduction="none",
)
log_probs_sum = -output.loss
log_probs_sum = log_probs_sum.view(num_ques, num_ans_candidates)
max_topk_ids = log_probs_sum.argmax(dim=1)
max_ids = topk_ids[max_topk_ids >= 0, max_topk_ids]
answers = [answer_list[max_id] for max_id in max_ids]
return answers
@classmethod
def from_config(cls, cfg=None):
image_encoder = VisionTransformerEncoder.from_config(cfg)
# text encoder + multimodal encoder
text_encoder = XBertEncoder.from_config(cfg)
text_decoder = XBertLMHeadDecoder.from_config(cfg)
max_txt_len = cfg.get("max_txt_len", 35)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
text_decoder=text_decoder,
max_txt_len=max_txt_len,
)
model.load_checkpoint_from_config(cfg)
return model
|