File size: 14,250 Bytes
d9272c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import torch
import torch.nn.functional as F
from lavis.common.registry import registry
from lavis.models.base_model import tile
from lavis.models.blip_models.blip import BlipBase
from lavis.models.blip_models.blip_outputs import (
    BlipOutput,
    BlipIntermediateOutput,
)
from lavis.models.med import XBertEncoder, XBertLMHeadDecoder
from lavis.models.vit import VisionTransformerEncoder


@registry.register_model("blip_vqa")
class BlipVQA(BlipBase):
    """
    BLIP VQA models.

    Supported model types:
        - base: vqa model initialized with pre-trained BLIP base model on 115M image-text pairs after CapFilt; not fine-tuned.
        - vqav2: fine-tuned BLIP base model on VQA v2.0 dataset.

    Usage:
        >>> from lavis.models import load_model
        >>> model = load_model("blip_vqa", "vqav2")
        >>> model = load_model("blip_vqa", "okvqa")
        >>> model = load_model("blip_vqa", "aokvqa")
    """

    PRETRAINED_MODEL_CONFIG_DICT = {
        "vqav2": "configs/models/blip_vqav2.yaml",
        "okvqa": "configs/models/blip_vqa_okvqa.yaml",
        "aokvqa": "configs/models/blip_vqa_aokvqa.yaml",
    }

    def __init__(self, image_encoder, text_encoder, text_decoder, max_txt_len=35):
        super().__init__()
        self.tokenizer = self.init_tokenizer()

        self.visual_encoder = image_encoder

        self.text_encoder = text_encoder
        self.text_decoder = text_decoder

        self.max_txt_len = max_txt_len

    def forward(self, samples):
        """
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
                - text_input (list): A list of strings, each string is a question
                - answer (list): A list of strings, each string is an answer
                - weight (torch.Tensor): A tensor used to weigh each answer in the loss computation.
                   The shape of the tensor is (sum(n_answers),)
                - n_answers (torch.Tensor): A tensor shape (batch_size,) containing the number of answers
                     for each question in the batch.

        Returns:
            A BlipOutput object containing loss and intermediate outputs,
            see :class:`lavis.models.blip_outputs.BlipOutput` for more details.

        Examples:
        ```python
            >>> import torch
            >>> from lavis.models import load_model
            >>> model = load_model("blip_vqa")
            >>> samples = {
            ...     "image": torch.rand(2, 3, 480, 480),
            ...     "text_input": ["What is this?", "What is that?"],
            ...     "answer": ["cat", "cat", "dog"],
            ...     "weight": torch.tensor([1.0, 1.0, 1.0]),
            ...     "n_answers": torch.tensor([2, 1]),
            ... }
            >>> output = model(samples)
            >>> output.keys()
            odict_keys(['intermediate_output', 'loss'])
            >>> output.intermediate_output.keys()
            odict_keys(['image_embeds', 'encoder_output', 'decoder_output', 'decoder_labels'])
        ```
        """
        encoder_output, image_embeds = self.forward_encoder(samples)
        loss, decoder_output, decoder_targets = self.forward_decoder(
            samples=samples, encoder_out=encoder_output
        )

        return BlipOutput(
            loss=loss,
            intermediate_output=BlipIntermediateOutput(
                image_embeds=image_embeds,
                encoder_output=encoder_output,
                decoder_output=decoder_output,
                decoder_labels=decoder_targets,
            ),
        )

    def forward_encoder(self, samples):
        questions = samples["text_input"]
        questions = self.tokenizer(
            questions,
            padding="longest",
            truncation=True,
            max_length=self.max_txt_len,
            return_tensors="pt",
        ).to(self.device)
        questions.input_ids[:, 0] = self.tokenizer.enc_token_id
        samples.update({"tokenized_text": questions})

        image_embeds = self.visual_encoder.forward_features(samples["image"])
        encoder_output = self.text_encoder.forward_automask(
            tokenized_text=samples["tokenized_text"], visual_embeds=image_embeds
        )

        return encoder_output, image_embeds

    def forward_decoder(self, samples, encoder_out, **kwargs):
        answers = self.tokenizer(
            samples["answer"], padding="longest", return_tensors="pt"
        ).to(self.device)
        answers.input_ids[:, 0] = self.tokenizer.bos_token_id
        answer_targets = answers.input_ids.masked_fill(
            answers.input_ids == self.tokenizer.pad_token_id, -100
        )

        question_states = []
        question_atts = []

        question = samples["tokenized_text"]
        question_output = encoder_out

        for b, n in enumerate(samples["n_answers"]):
            question_states += [question_output.last_hidden_state[b]] * n
            question_atts += [question.attention_mask[b]] * n

        question_states = torch.stack(question_states, dim=0)
        question_atts = torch.stack(question_atts, dim=0)

        answer_output = self.text_decoder(
            answers.input_ids,
            attention_mask=answers.attention_mask,
            encoder_hidden_states=question_states,
            encoder_attention_mask=question_atts,
            labels=answer_targets,
            return_dict=True,
            reduction="none",
        )

        loss = samples["weight"] * answer_output.loss
        bsz = samples["image"].size(0)

        loss = loss.sum() / bsz

        return loss, answer_output, answer_targets

    def predict_answers(
        self,
        samples,
        num_beams=3,
        inference_method="rank",
        max_len=10,
        min_len=1,
        num_ans_candidates=128,
        answer_list=None,
        **kwargs
    ):
        """
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
                - text_input (str or [str]): String or a list of strings, each string is a question.
                                             The number of questions must be equal to the batch size. If a single string, will be converted to a list of string, with length 1 first.
            num_beams (int): Number of beams for beam search. 1 means no beam search.
            inference_method (str): Inference method. One of "rank", "generate".
                - If "rank", the model will return answers with the highest probability from the answer list.
                - If "generate", the model will generate answers.
            max_len (int): Maximum length of generated answers.
            min_len (int): Minimum length of generated answers.
            num_ans_candidates (int): Number of answer candidates, used to filter out answers with low probability.
            answer_list (list): A list of strings, each string is an answer.

        Returns:
            List: A list of strings, each string is an answer.

        Examples:
        ```python
            >>> from PIL import Image
            >>> from lavis.models import load_model_and_preprocess
            >>> model, vis_processors, txt_processors = load_model_and_preprocess("blip_vqa", "vqav2")
            >>> raw_image = Image.open("docs/data/merlion.png").convert("RGB")
            >>> question = "Which city is this photo taken?"
            >>> image = vis_processors["eval"](raw_image).unsqueeze(0)
            >>> question = txt_processors["eval"](question)
            >>> samples = {"image": image, "text_input": [question]}
            >>> answers = model.predict_answers(samples)
            >>> answers
            ['singapore']
            >>> answer_list = ["Singapore", "London", "Palo Alto", "Tokyo"]
            >>> answers = model.predict_answers(samples, answer_list=answer_list)
            >>> answers
            ['Singapore']
        ```
        """
        assert inference_method in [
            "rank",
            "generate",
        ], "Inference method must be one of 'rank' or 'generate', got {}.".format(
            inference_method
        )

        if isinstance(samples["text_input"], str):
            samples["text_input"] = [samples["text_input"]]

        assert len(samples["text_input"]) == samples["image"].size(
            0
        ), "The number of questions must be equal to the batch size."

        if inference_method == "generate":
            return self._generate_answers(
                samples, num_beams=num_beams, max_length=max_len, min_length=min_len
            )
        elif inference_method == "rank":
            assert answer_list is not None, "answer_list must be provided for ranking"

            num_ans_candidates = min(num_ans_candidates, len(answer_list))

            return self._rank_answers(
                samples, answer_list=answer_list, num_ans_candidates=num_ans_candidates
            )

    def _generate_answers(self, samples, num_beams=3, max_length=10, min_length=1):
        encoder_out, _ = self.forward_encoder(samples)

        question_output = encoder_out

        question_states = question_output.last_hidden_state.repeat_interleave(
            num_beams, dim=0
        )
        question_atts = torch.ones(question_states.size()[:-1], dtype=torch.long).to(
            self.device
        )

        model_kwargs = {
            "encoder_hidden_states": question_states,
            "encoder_attention_mask": question_atts,
        }

        bsz = samples["image"].size(0)
        bos_ids = torch.full(
            (bsz, 1), fill_value=self.tokenizer.bos_token_id, device=self.device
        )

        outputs = self.text_decoder.generate(
            input_ids=bos_ids,
            max_length=max_length,
            min_length=min_length,
            num_beams=num_beams,
            eos_token_id=self.tokenizer.sep_token_id,
            pad_token_id=self.tokenizer.pad_token_id,
            **model_kwargs
        )

        # collect answers
        answers = []
        for output in outputs:
            answer = self.tokenizer.decode(output, skip_special_tokens=True)
            answers.append(answer)

        return answers

    def _rank_answers(self, samples, answer_list, num_ans_candidates):
        """
        Generate the first token of answers using decoder and select ${num_ans_candidates}
        most probable ones. Then select answers from answer list, which start with the probable tokens.
        Lastly, use the selected answers as the ground-truth labels for decoding and calculating LM loss.
        Return the answers that minimize the losses as result.

        """
        answer_candidates = self.tokenizer(
            answer_list, padding="longest", return_tensors="pt"
        ).to(self.device)
        answer_candidates.input_ids[:, 0] = self.tokenizer.bos_token_id

        answer_ids = answer_candidates.input_ids
        answer_atts = answer_candidates.attention_mask

        question_output, _ = self.forward_encoder(samples)
        question_states = question_output.last_hidden_state

        tokenized_question = samples["tokenized_text"]
        question_atts = tokenized_question.attention_mask

        num_ques = question_states.size(0)
        start_ids = answer_ids[0, 0].repeat(num_ques, 1)  # bos token

        start_output = self.text_decoder(
            start_ids,
            encoder_hidden_states=question_states,
            encoder_attention_mask=question_atts,
            return_dict=True,
            reduction="none",
        )
        logits = start_output.logits[:, 0, :]  # first token's logit

        # topk_probs: top-k probability
        # topk_ids: [num_question, k]
        answer_first_token = answer_ids[:, 1]
        prob_first_token = F.softmax(logits, dim=1).index_select(
            dim=1, index=answer_first_token
        )
        topk_probs, topk_ids = prob_first_token.topk(num_ans_candidates, dim=1)

        # answer input: [num_question*k, answer_len]
        input_ids = []
        input_atts = []
        for b, topk_id in enumerate(topk_ids):
            input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
            input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
        input_ids = torch.cat(input_ids, dim=0)
        input_atts = torch.cat(input_atts, dim=0)

        targets_ids = input_ids.masked_fill(
            input_ids == self.tokenizer.pad_token_id, -100
        )

        # repeat encoder's output for top-k answers
        question_states = tile(question_states, 0, num_ans_candidates)
        question_atts = tile(question_atts, 0, num_ans_candidates)

        output = self.text_decoder(
            input_ids,
            attention_mask=input_atts,
            encoder_hidden_states=question_states,
            encoder_attention_mask=question_atts,
            labels=targets_ids,
            return_dict=True,
            reduction="none",
        )

        log_probs_sum = -output.loss
        log_probs_sum = log_probs_sum.view(num_ques, num_ans_candidates)

        max_topk_ids = log_probs_sum.argmax(dim=1)
        max_ids = topk_ids[max_topk_ids >= 0, max_topk_ids]

        answers = [answer_list[max_id] for max_id in max_ids]

        return answers

    @classmethod
    def from_config(cls, cfg=None):
        image_encoder = VisionTransformerEncoder.from_config(cfg)

        # text encoder + multimodal encoder
        text_encoder = XBertEncoder.from_config(cfg)
        text_decoder = XBertLMHeadDecoder.from_config(cfg)

        max_txt_len = cfg.get("max_txt_len", 35)

        model = cls(
            image_encoder=image_encoder,
            text_encoder=text_encoder,
            text_decoder=text_decoder,
            max_txt_len=max_txt_len,
        )

        model.load_checkpoint_from_config(cfg)

        return model