Spaces:
Running
on
L40S
Running
on
L40S
File size: 10,507 Bytes
38dbec8 eecf990 38dbec8 eecf990 38dbec8 1c05005 38dbec8 eecf990 a399d55 e2ccc8a 38dbec8 eecf990 e2ccc8a 38dbec8 eecf990 e2ccc8a eecf990 1c05005 e2ccc8a eecf990 38dbec8 1c05005 eecf990 38dbec8 aec7186 c882a68 aec7186 c882a68 aec7186 03dc078 daf9fe6 c882a68 2728300 c882a68 03dc078 2728300 4b4ce8a 9e70cab c882a68 03dc078 c882a68 4b4ce8a c882a68 4b4ce8a 9e70cab c882a68 4b4ce8a 2728300 9e70cab 03dc078 4b4ce8a c882a68 4b4ce8a c882a68 4b4ce8a c882a68 4b4ce8a c882a68 eecf990 751171e 4b4ce8a 9e70cab 4b4ce8a 9e70cab 751171e 4b4ce8a 751171e 4b4ce8a 751171e 4b4ce8a 751171e b0a67b8 1c05005 b0a67b8 eecf990 751171e 1c05005 e973397 f779fbc 1c05005 f779fbc daf9fe6 f779fbc 3b58a26 aec7186 3b58a26 aec7186 3b58a26 eecf990 751171e daf9fe6 e973397 1c05005 38dbec8 eecf990 38dbec8 dc16672 38dbec8 751171e f779fbc daf9fe6 eecf990 751171e eecf990 f779fbc e973397 1c05005 eecf990 b0a67b8 eecf990 287be50 eecf990 f779fbc e973397 f779fbc e973397 eecf990 a6bc9a4 eecf990 daf9fe6 751171e e973397 dc16672 e973397 eecf990 1c05005 a6bc9a4 1c05005 e973397 1c05005 a6bc9a4 1c05005 eecf990 38dbec8 eecf990 e973397 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import os
import tempfile
from typing import Any
import torch
import numpy as np
from PIL import Image
import gradio as gr
import trimesh
from transparent_background import Remover
from diffusers import DiffusionPipeline
# Import and setup SPAR3D
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
import spar3d.utils as spar3d_utils
from spar3d.system import SPAR3D
# Constants
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Initialize models
device = spar3d_utils.get_device()
bg_remover = Remover()
spar3d_model = SPAR3D.from_pretrained(
"stabilityai/stable-point-aware-3d",
config_name="config.yaml",
weight_name="model.safetensors"
).eval().to(device)
# Initialize FLUX model
dtype = torch.bfloat16
flux_pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
# Initialize camera parameters
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
COND_FOVY, COND_HEIGHT, COND_WIDTH
)
def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image:
"""Create an RGBA image from RGB image and optional mask."""
rgba_image = rgb_image.convert('RGBA')
if mask is not None:
print("[debug] mask shape before alpha:", mask.shape)
# Ensure mask is 2D before converting to alpha
if len(mask.shape) > 2:
mask = mask.squeeze()
alpha = Image.fromarray((mask * 255).astype(np.uint8))
print("[debug] alpha size:", alpha.size)
rgba_image.putalpha(alpha)
return rgba_image
def create_batch(input_image: Image.Image) -> dict[str, Any]:
"""Prepare image batch for model input."""
# Resize and convert input image to numpy array
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
img_array = np.array(resized_image).astype(np.float32) / 255.0
print("[debug] img_array shape:", img_array.shape)
# Extract RGB and alpha channels
if img_array.shape[-1] == 4: # RGBA
rgb = img_array[..., :3]
mask = img_array[..., 3:4]
else: # RGB
rgb = img_array
mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32)
# Convert to tensors while keeping channel-last format
rgb = torch.from_numpy(rgb).float() # [H, W, 3]
mask = torch.from_numpy(mask).float() # [H, W, 1]
print("[debug] rgb tensor shape:", rgb.shape)
print("[debug] mask tensor shape:", mask.shape)
# Create background blend (match channel-last format)
bg_tensor = torch.tensor(BACKGROUND_COLOR).view(1, 1, 3) # [1, 1, 3]
print("[debug] bg_tensor shape:", bg_tensor.shape)
# Blend RGB with background using mask (all in channel-last format)
rgb_cond = torch.lerp(bg_tensor, rgb, mask) # [H, W, 3]
print("[debug] rgb_cond shape after blend:", rgb_cond.shape)
# Move channels to correct dimension and add batch dimension
# Important: For SPAR3D image tokenizer, we need [B, H, W, C] format
rgb_cond = rgb_cond.unsqueeze(0) # [1, H, W, 3]
mask = mask.unsqueeze(0) # [1, H, W, 1]
print("[debug] rgb_cond final shape:", rgb_cond.shape)
print("[debug] mask final shape:", mask.shape)
# Create the batch dictionary
batch = {
"rgb_cond": rgb_cond, # [1, H, W, 3]
"mask_cond": mask, # [1, H, W, 1]
"c2w_cond": c2w_cond.unsqueeze(0), # [1, 4, 4]
"intrinsic_cond": intrinsic.unsqueeze(0), # [1, 3, 3]
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), # [1, 3, 3]
}
print("\nFinal batch shapes:")
for k, v in batch.items():
print(f"[debug] {k} final shape:", v.shape)
print("\nrgb_cond max:", batch["rgb_cond"].max())
print("rgb_cond min:", batch["rgb_cond"].min())
print("mask_cond unique values:", torch.unique(batch["mask_cond"]))
return batch
def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
"""Process batch through model and generate point cloud."""
print("\n[debug] Starting forward_model")
print("[debug] Input rgb_cond shape:", batch["rgb_cond"].shape)
print("[debug] Input mask_cond shape:", batch["mask_cond"].shape)
batch_size = batch["rgb_cond"].shape[0]
assert batch_size == 1, f"Expected batch size 1, got {batch_size}"
# Print value ranges for debugging
print("\nValue ranges:")
print("rgb_cond max:", batch["rgb_cond"].max())
print("rgb_cond min:", batch["rgb_cond"].min())
print("mask_cond unique values:", torch.unique(batch["mask_cond"]))
# Generate point cloud tokens
print("\n[debug] Generating point cloud tokens")
try:
cond_tokens = system.forward_pdiff_cond(batch)
print("[debug] cond_tokens shape:", cond_tokens.shape)
except Exception as e:
print("\n[ERROR] Failed in forward_pdiff_cond:")
print(e)
print("\nInput tensor properties:")
print("rgb_cond dtype:", batch["rgb_cond"].dtype)
print("rgb_cond device:", batch["rgb_cond"].device)
print("rgb_cond requires_grad:", batch["rgb_cond"].requires_grad)
raise
# Sample points
print("\n[debug] Sampling points")
sample_iter = system.sampler.sample_batch_progressive(
batch_size,
cond_tokens,
guidance_scale=guidance_scale,
device=device
)
# Get final samples
for x in sample_iter:
samples = x["xstart"]
print("[debug] samples shape before permute:", samples.shape)
pc_cond = samples.permute(0, 2, 1).float()
print("[debug] pc_cond shape after permute:", pc_cond.shape)
# Normalize point cloud
pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond)
print("[debug] pc_cond shape after normalize:", pc_cond.shape)
# Subsample to 512 points
pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]]
print("[debug] pc_cond final shape:", pc_cond.shape)
return pc_cond
def generate_and_process_3d(prompt: str, seed: int = 42) -> tuple[str | None, Image.Image | None]:
"""Generate image from prompt and convert to 3D model."""
width: int = 1024
height: int = 1024
try:
# Set random seeds
torch.manual_seed(seed)
np.random.seed(seed)
# Generate image using FLUX
generator = torch.Generator(device=device).manual_seed(seed)
print("[debug] generating the image using Flux")
generated_image = flux_pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=4,
generator=generator,
guidance_scale=0.0
).images[0]
print("[debug] converting the image to rgb")
rgb_image = generated_image.convert('RGB')
print("[debug] removing the background by calling bg_remover.process(rgb_image)")
# bg_remover returns a PIL Image already, no need to convert
no_bg_image = bg_remover.process(rgb_image)
print(f"[debug] no_bg_image type: {type(no_bg_image)}, mode: {no_bg_image.mode}")
# Convert to RGBA if not already
rgba_image = no_bg_image.convert('RGBA')
print(f"[debug] rgba_image mode: {rgba_image.mode}")
print("[debug] auto-cropping the rgba_image using spar3d_utils.foreground_crop(...)")
processed_image = spar3d_utils.foreground_crop(
rgba_image,
crop_ratio=1.3,
newsize=(COND_WIDTH, COND_HEIGHT),
no_crop=False
)
# Show the processed image alpha channel for debugging
alpha = np.array(processed_image)[:, :, 3]
print(f"[debug] Alpha channel stats - min: {alpha.min()}, max: {alpha.max()}, unique: {np.unique(alpha)}")
# Prepare batch for processing
print("[debug] preparing the batch by calling create_batch(processed_image)")
batch = create_batch(processed_image)
batch = {k: v.to(device) for k, v in batch.items()}
# Generate point cloud
pc_cond = forward_model(
batch,
spar3d_model,
guidance_scale=3.0,
seed=seed,
device=device
)
batch["pc_cond"] = pc_cond
# Generate mesh
with torch.no_grad():
print("[debug] calling torch.autocast(....) to generate the mesh")
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
trimesh_mesh, _ = spar3d_model.generate_mesh(
batch,
2048, # texture_resolution
remesh="none",
vertex_count=-1,
estimate_illumination=True
)
trimesh_mesh = trimesh_mesh[0]
# Export to GLB
print("[debug] creating tmp dir for the .glb output")
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output.glb')
print("[debug] calling trimesh_mesh.export(...) to export to .glb")
trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
return output_path, output_path, generated_image
except Exception as e:
print(f"Error during generation: {str(e)}")
import traceback
traceback.print_exc()
return None, None
# Create Gradio interface
demo = gr.Interface(
fn=generate_and_process_3d,
inputs=[
gr.Text(
label="Enter your prompt",
placeholder="Describe what you want to generate..."
),
gr.Slider(
label="Seed",
minimum=0,
maximum=np.iinfo(np.int32).max,
step=1,
value=42
)
],
outputs=[
gr.Model3D(
label="3D Model Preview",
clear_color=[0.0, 0.0, 0.0, 0.0],
),
gr.File(
label="Download 3D Model",
file_types=[".glb"]
),
gr.Image(
label="Generated Image",
type="pil"
),
],
title="Text to 3D Model Generator",
description="Enter a text prompt to generate an image that will be converted into a 3D model",
)
if __name__ == "__main__":
demo.queue().launch() |