Spaces:
Running
on
L40S
Running
on
L40S
Update gradio_app.py
Browse files- gradio_app.py +41 -33
gradio_app.py
CHANGED
@@ -71,68 +71,77 @@ def create_batch(input_image: Image.Image) -> dict[str, Any]:
|
|
71 |
rgb = img_array
|
72 |
mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32)
|
73 |
|
74 |
-
# Convert to tensors
|
75 |
rgb = torch.from_numpy(rgb).float() # [H, W, 3]
|
76 |
mask = torch.from_numpy(mask).float() # [H, W, 1]
|
77 |
print("[debug] rgb tensor shape:", rgb.shape)
|
78 |
print("[debug] mask tensor shape:", mask.shape)
|
79 |
|
80 |
-
# Create background blend
|
81 |
-
bg_tensor = torch.tensor(BACKGROUND_COLOR) # [3]
|
82 |
print("[debug] bg_tensor shape:", bg_tensor.shape)
|
83 |
|
84 |
-
# Blend RGB with background using mask
|
85 |
-
rgb_cond = torch.lerp(
|
86 |
-
bg_tensor.view(1, 1, 3), # [1, 1, 3]
|
87 |
-
rgb, # [H, W, 3]
|
88 |
-
mask # [H, W, 1]
|
89 |
-
)
|
90 |
print("[debug] rgb_cond shape after blend:", rgb_cond.shape)
|
91 |
|
92 |
-
#
|
93 |
-
|
94 |
-
|
|
|
95 |
|
96 |
print("[debug] rgb_cond final shape:", rgb_cond.shape)
|
97 |
print("[debug] mask final shape:", mask.shape)
|
98 |
|
|
|
99 |
batch = {
|
100 |
-
"rgb_cond": rgb_cond,
|
101 |
-
"mask_cond": mask,
|
102 |
-
"c2w_cond": c2w_cond.unsqueeze(0),
|
103 |
-
"intrinsic_cond": intrinsic.unsqueeze(0),
|
104 |
-
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
|
105 |
}
|
106 |
|
107 |
-
|
108 |
for k, v in batch.items():
|
109 |
print(f"[debug] {k} final shape:", v.shape)
|
|
|
|
|
|
|
110 |
|
111 |
return batch
|
112 |
|
113 |
def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
|
114 |
"""Process batch through model and generate point cloud."""
|
115 |
-
print("[debug] Starting forward_model")
|
116 |
print("[debug] Input rgb_cond shape:", batch["rgb_cond"].shape)
|
117 |
-
|
118 |
-
# Ensure input is in correct format [B, C, H, W]
|
119 |
-
if batch["rgb_cond"].shape[1] != 3:
|
120 |
-
batch["rgb_cond"] = batch["rgb_cond"].permute(0, 3, 1, 2)
|
121 |
-
if batch["mask_cond"].shape[1] != 1:
|
122 |
-
batch["mask_cond"] = batch["mask_cond"].permute(0, 3, 1, 2)
|
123 |
-
|
124 |
-
print("[debug] Processed rgb_cond shape:", batch["rgb_cond"].shape)
|
125 |
-
print("[debug] Processed mask_cond shape:", batch["mask_cond"].shape)
|
126 |
|
127 |
batch_size = batch["rgb_cond"].shape[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
# Generate point cloud tokens
|
130 |
-
print("[debug] Generating point cloud tokens")
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
# Sample points
|
135 |
-
print("[debug] Sampling points")
|
136 |
sample_iter = system.sampler.sample_batch_progressive(
|
137 |
batch_size,
|
138 |
cond_tokens,
|
@@ -145,7 +154,6 @@ def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
|
|
145 |
samples = x["xstart"]
|
146 |
|
147 |
print("[debug] samples shape before permute:", samples.shape)
|
148 |
-
# Convert samples to point cloud format
|
149 |
pc_cond = samples.permute(0, 2, 1).float()
|
150 |
print("[debug] pc_cond shape after permute:", pc_cond.shape)
|
151 |
|
|
|
71 |
rgb = img_array
|
72 |
mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32)
|
73 |
|
74 |
+
# Convert to tensors while keeping channel-last format
|
75 |
rgb = torch.from_numpy(rgb).float() # [H, W, 3]
|
76 |
mask = torch.from_numpy(mask).float() # [H, W, 1]
|
77 |
print("[debug] rgb tensor shape:", rgb.shape)
|
78 |
print("[debug] mask tensor shape:", mask.shape)
|
79 |
|
80 |
+
# Create background blend (match channel-last format)
|
81 |
+
bg_tensor = torch.tensor(BACKGROUND_COLOR).view(1, 1, 3) # [1, 1, 3]
|
82 |
print("[debug] bg_tensor shape:", bg_tensor.shape)
|
83 |
|
84 |
+
# Blend RGB with background using mask (all in channel-last format)
|
85 |
+
rgb_cond = torch.lerp(bg_tensor, rgb, mask) # [H, W, 3]
|
|
|
|
|
|
|
|
|
86 |
print("[debug] rgb_cond shape after blend:", rgb_cond.shape)
|
87 |
|
88 |
+
# Move channels to correct dimension and add batch dimension
|
89 |
+
# Important: For SPAR3D image tokenizer, we need [B, H, W, C] format
|
90 |
+
rgb_cond = rgb_cond.unsqueeze(0) # [1, H, W, 3]
|
91 |
+
mask = mask.unsqueeze(0) # [1, H, W, 1]
|
92 |
|
93 |
print("[debug] rgb_cond final shape:", rgb_cond.shape)
|
94 |
print("[debug] mask final shape:", mask.shape)
|
95 |
|
96 |
+
# Create the batch dictionary
|
97 |
batch = {
|
98 |
+
"rgb_cond": rgb_cond, # [1, H, W, 3]
|
99 |
+
"mask_cond": mask, # [1, H, W, 1]
|
100 |
+
"c2w_cond": c2w_cond.unsqueeze(0), # [1, 4, 4]
|
101 |
+
"intrinsic_cond": intrinsic.unsqueeze(0), # [1, 3, 3]
|
102 |
+
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), # [1, 3, 3]
|
103 |
}
|
104 |
|
105 |
+
print("\nFinal batch shapes:")
|
106 |
for k, v in batch.items():
|
107 |
print(f"[debug] {k} final shape:", v.shape)
|
108 |
+
print("\nrgb_cond max:", batch["rgb_cond"].max())
|
109 |
+
print("rgb_cond min:", batch["rgb_cond"].min())
|
110 |
+
print("mask_cond unique values:", torch.unique(batch["mask_cond"]))
|
111 |
|
112 |
return batch
|
113 |
|
114 |
def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
|
115 |
"""Process batch through model and generate point cloud."""
|
116 |
+
print("\n[debug] Starting forward_model")
|
117 |
print("[debug] Input rgb_cond shape:", batch["rgb_cond"].shape)
|
118 |
+
print("[debug] Input mask_cond shape:", batch["mask_cond"].shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
batch_size = batch["rgb_cond"].shape[0]
|
121 |
+
assert batch_size == 1, f"Expected batch size 1, got {batch_size}"
|
122 |
+
|
123 |
+
# Print value ranges for debugging
|
124 |
+
print("\nValue ranges:")
|
125 |
+
print("rgb_cond max:", batch["rgb_cond"].max())
|
126 |
+
print("rgb_cond min:", batch["rgb_cond"].min())
|
127 |
+
print("mask_cond unique values:", torch.unique(batch["mask_cond"]))
|
128 |
|
129 |
# Generate point cloud tokens
|
130 |
+
print("\n[debug] Generating point cloud tokens")
|
131 |
+
try:
|
132 |
+
cond_tokens = system.forward_pdiff_cond(batch)
|
133 |
+
print("[debug] cond_tokens shape:", cond_tokens.shape)
|
134 |
+
except Exception as e:
|
135 |
+
print("\n[ERROR] Failed in forward_pdiff_cond:")
|
136 |
+
print(e)
|
137 |
+
print("\nInput tensor properties:")
|
138 |
+
print("rgb_cond dtype:", batch["rgb_cond"].dtype)
|
139 |
+
print("rgb_cond device:", batch["rgb_cond"].device)
|
140 |
+
print("rgb_cond requires_grad:", batch["rgb_cond"].requires_grad)
|
141 |
+
raise
|
142 |
|
143 |
# Sample points
|
144 |
+
print("\n[debug] Sampling points")
|
145 |
sample_iter = system.sampler.sample_batch_progressive(
|
146 |
batch_size,
|
147 |
cond_tokens,
|
|
|
154 |
samples = x["xstart"]
|
155 |
|
156 |
print("[debug] samples shape before permute:", samples.shape)
|
|
|
157 |
pc_cond = samples.permute(0, 2, 1).float()
|
158 |
print("[debug] pc_cond shape after permute:", pc_cond.shape)
|
159 |
|