Spaces:
Running
Running
| # Arguments | |
| This document lists all the arguments that can be passed to the `train.py` script. For more information, please take a look at the `finetrainers/args.py` file. | |
| ## Table of contents | |
| - [General arguments](#general) | |
| - [SFT training arguments](#sft-training) | |
| - [Control training arguments](#control-training) | |
| ## General | |
| <!-- TODO(aryan): write a github workflow that automatically updates this page --> | |
| ``` | |
| PARALLEL ARGUMENTS | |
| ------------------ | |
| parallel_backend (`str`, defaults to `accelerate`): | |
| The parallel backend to use for training. Choose between ['accelerate', 'ptd']. | |
| pp_degree (`int`, defaults to `1`): | |
| The degree of pipeline parallelism. | |
| dp_degree (`int`, defaults to `1`): | |
| The degree of data parallelism (number of model replicas). | |
| dp_shards (`int`, defaults to `-1`): | |
| The number of data parallel shards (number of model partitions). | |
| cp_degree (`int`, defaults to `1`): | |
| The degree of context parallelism. | |
| MODEL ARGUMENTS | |
| --------------- | |
| model_name (`str`): | |
| Name of model to train. To get a list of models, run `python train.py --list_models`. | |
| pretrained_model_name_or_path (`str`): | |
| Path to pretrained model or model identifier from https://huggingface.co/models. The model should be | |
| loadable based on specified `model_name`. | |
| revision (`str`, defaults to `None`): | |
| If provided, the model will be loaded from a specific branch of the model repository. | |
| variant (`str`, defaults to `None`): | |
| Variant of model weights to use. Some models provide weight variants, such as `fp16`, to reduce disk | |
| storage requirements. | |
| cache_dir (`str`, defaults to `None`): | |
| The directory where the downloaded models and datasets will be stored, or loaded from. | |
| tokenizer_id (`str`, defaults to `None`): | |
| Identifier for the tokenizer model. This is useful when using a different tokenizer than the default from `pretrained_model_name_or_path`. | |
| tokenizer_2_id (`str`, defaults to `None`): | |
| Identifier for the second tokenizer model. This is useful when using a different tokenizer than the default from `pretrained_model_name_or_path`. | |
| tokenizer_3_id (`str`, defaults to `None`): | |
| Identifier for the third tokenizer model. This is useful when using a different tokenizer than the default from `pretrained_model_name_or_path`. | |
| text_encoder_id (`str`, defaults to `None`): | |
| Identifier for the text encoder model. This is useful when using a different text encoder than the default from `pretrained_model_name_or_path`. | |
| text_encoder_2_id (`str`, defaults to `None`): | |
| Identifier for the second text encoder model. This is useful when using a different text encoder than the default from `pretrained_model_name_or_path`. | |
| text_encoder_3_id (`str`, defaults to `None`): | |
| Identifier for the third text encoder model. This is useful when using a different text encoder than the default from `pretrained_model_name_or_path`. | |
| transformer_id (`str`, defaults to `None`): | |
| Identifier for the transformer model. This is useful when using a different transformer model than the default from `pretrained_model_name_or_path`. | |
| vae_id (`str`, defaults to `None`): | |
| Identifier for the VAE model. This is useful when using a different VAE model than the default from `pretrained_model_name_or_path`. | |
| text_encoder_dtype (`torch.dtype`, defaults to `torch.bfloat16`): | |
| Data type for the text encoder when generating text embeddings. | |
| text_encoder_2_dtype (`torch.dtype`, defaults to `torch.bfloat16`): | |
| Data type for the text encoder 2 when generating text embeddings. | |
| text_encoder_3_dtype (`torch.dtype`, defaults to `torch.bfloat16`): | |
| Data type for the text encoder 3 when generating text embeddings. | |
| transformer_dtype (`torch.dtype`, defaults to `torch.bfloat16`): | |
| Data type for the transformer model. | |
| vae_dtype (`torch.dtype`, defaults to `torch.bfloat16`): | |
| Data type for the VAE model. | |
| layerwise_upcasting_modules (`List[str]`, defaults to `[]`): | |
| Modules that should have fp8 storage weights but higher precision computation. Choose between ['transformer']. | |
| layerwise_upcasting_storage_dtype (`torch.dtype`, defaults to `float8_e4m3fn`): | |
| Data type for the layerwise upcasting storage. Choose between ['float8_e4m3fn', 'float8_e5m2']. | |
| layerwise_upcasting_skip_modules_pattern (`List[str]`, defaults to `["patch_embed", "pos_embed", "x_embedder", "context_embedder", "^proj_in$", "^proj_out$", "norm"]`): | |
| Modules to skip for layerwise upcasting. Layers such as normalization and modulation, when casted to fp8 precision | |
| naively (as done in layerwise upcasting), can lead to poorer training and inference quality. We skip these layers | |
| by default, and recommend adding more layers to the default list based on the model architecture. | |
| compile_modules (`List[str]`, defaults to `[]`): | |
| Modules that should be regionally compiled with `torch.compile`. Choose one or more from ['transformer']. | |
| DATASET ARGUMENTS | |
| ----------------- | |
| dataset_config (`str`): | |
| File to a dataset file containing information about training data. This file can contain information about one or | |
| more datasets in JSON format. The file must have a key called "datasets", which is a list of dictionaries. Each | |
| dictionary must contain the following keys: | |
| - "data_root": (`str`) | |
| The root directory containing the dataset. This parameter must be provided if `dataset_file` is not provided. | |
| - "dataset_file": (`str`) | |
| Path to a CSV/JSON/JSONL/PARQUET/ARROW/HF_HUB_DATASET file containing metadata for training. This parameter | |
| must be provided if `data_root` is not provided. | |
| - "dataset_type": (`str`) | |
| Type of dataset. Choose between ['image', 'video']. | |
| - "id_token": (`str`) | |
| Identifier token appended to the start of each prompt if provided. This is useful for LoRA-type training | |
| for single subject/concept/style training, but is not necessary. | |
| - "image_resolution_buckets": (`List[Tuple[int, int]]`) | |
| Resolution buckets for image. This should be a list of tuples containing 2 values, where each tuple | |
| represents the resolution (height, width). All images will be resized to the nearest bucket resolution. | |
| This parameter must be provided if `dataset_type` is 'image'. | |
| - "video_resolution_buckets": (`List[Tuple[int, int, int]]`) | |
| Resolution buckets for video. This should be a list of tuples containing 3 values, where each tuple | |
| represents the resolution (num_frames, height, width). All videos will be resized to the nearest bucket | |
| resolution. This parameter must be provided if `dataset_type` is 'video'. | |
| - "reshape_mode": (`str`) | |
| All input images/videos are reshaped using this mode. Choose between the following: | |
| ["center_crop", "random_crop", "bicubic"]. | |
| - "remove_common_llm_caption_prefixes": (`boolean`) | |
| Whether or not to remove common LLM caption prefixes. See `~constants.py` for the list of common prefixes. | |
| dataset_shuffle_buffer_size (`int`, defaults to `1`): | |
| The buffer size for shuffling the dataset. This is useful for shuffling the dataset before training. The default | |
| value of `1` means that the dataset will not be shuffled. | |
| precomputation_items (`int`, defaults to `512`): | |
| Number of data samples to precompute at once for memory-efficient training. The higher this value, | |
| the more disk memory will be used to save the precomputed samples (conditions and latents). | |
| precomputation_dir (`str`, defaults to `None`): | |
| The directory where the precomputed samples will be stored. If not provided, the precomputed samples | |
| will be stored in a temporary directory of the output directory. | |
| precomputation_once (`bool`, defaults to `False`): | |
| Precompute embeddings from all datasets at once before training. This is useful to save time during training | |
| with smaller datasets. If set to `False`, will save disk space by precomputing embeddings on-the-fly during | |
| training when required. Make sure to set `precomputation_items` to a reasonable value in line with the size | |
| of your dataset(s). | |
| DATALOADER_ARGUMENTS | |
| -------------------- | |
| See https://pytorch.org/docs/stable/data.html for more information. | |
| dataloader_num_workers (`int`, defaults to `0`): | |
| Number of subprocesses to use for data loading. `0` means that the data will be loaded in a blocking manner | |
| on the main process. | |
| pin_memory (`bool`, defaults to `False`): | |
| Whether or not to use the pinned memory setting in PyTorch dataloader. This is useful for faster data loading. | |
| DIFFUSION ARGUMENTS | |
| ------------------- | |
| flow_resolution_shifting (`bool`, defaults to `False`): | |
| Resolution-dependent shifting of timestep schedules. | |
| [Scaling Rectified Flow Transformers for High-Resolution Image Synthesis](https://arxiv.org/abs/2403.03206). | |
| TODO(aryan): We don't support this yet. | |
| flow_base_seq_len (`int`, defaults to `256`): | |
| Base number of tokens for images/video when applying resolution-dependent shifting. | |
| flow_max_seq_len (`int`, defaults to `4096`): | |
| Maximum number of tokens for images/video when applying resolution-dependent shifting. | |
| flow_base_shift (`float`, defaults to `0.5`): | |
| Base shift for timestep schedules when applying resolution-dependent shifting. | |
| flow_max_shift (`float`, defaults to `1.15`): | |
| Maximum shift for timestep schedules when applying resolution-dependent shifting. | |
| flow_shift (`float`, defaults to `1.0`): | |
| Instead of training with uniform/logit-normal sigmas, shift them as (shift * sigma) / (1 + (shift - 1) * sigma). | |
| Setting it higher is helpful when trying to train models for high-resolution generation or to produce better | |
| samples in lower number of inference steps. | |
| flow_weighting_scheme (`str`, defaults to `none`): | |
| We default to the "none" weighting scheme for uniform sampling and uniform loss. | |
| Choose between ['sigma_sqrt', 'logit_normal', 'mode', 'cosmap', 'none']. | |
| flow_logit_mean (`float`, defaults to `0.0`): | |
| Mean to use when using the `'logit_normal'` weighting scheme. | |
| flow_logit_std (`float`, defaults to `1.0`): | |
| Standard deviation to use when using the `'logit_normal'` weighting scheme. | |
| flow_mode_scale (`float`, defaults to `1.29`): | |
| Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`. | |
| TRAINING ARGUMENTS | |
| ------------------ | |
| training_type (`str`, defaults to `None`): | |
| Type of training to perform. Choose between ['lora']. | |
| seed (`int`, defaults to `42`): | |
| A seed for reproducible training. | |
| batch_size (`int`, defaults to `1`): | |
| Per-device batch size. | |
| train_steps (`int`, defaults to `1000`): | |
| Total number of training steps to perform. | |
| max_data_samples (`int`, defaults to `2**64`): | |
| Maximum number of data samples observed during training training. If lesser than that required by `train_steps`, | |
| the training will stop early. | |
| gradient_accumulation_steps (`int`, defaults to `1`): | |
| Number of gradients steps to accumulate before performing an optimizer step. | |
| gradient_checkpointing (`bool`, defaults to `False`): | |
| Whether or not to use gradient/activation checkpointing to save memory at the expense of slower | |
| backward pass. | |
| checkpointing_steps (`int`, defaults to `500`): | |
| Save a checkpoint of the training state every X training steps. These checkpoints can be used both | |
| as final checkpoints in case they are better than the last checkpoint, and are also suitable for | |
| resuming training using `resume_from_checkpoint`. | |
| checkpointing_limit (`int`, defaults to `None`): | |
| Max number of checkpoints to store. | |
| resume_from_checkpoint (`str`, defaults to `None`): | |
| Whether training should be resumed from a previous checkpoint. Use a path saved by `checkpointing_steps`, | |
| or `"latest"` to automatically select the last available checkpoint. | |
| OPTIMIZER ARGUMENTS | |
| ------------------- | |
| optimizer (`str`, defaults to `adamw`): | |
| The optimizer type to use. Choose between the following: | |
| - Torch optimizers: ["adam", "adamw"] | |
| - Bitsandbytes optimizers: ["adam-bnb", "adamw-bnb", "adam-bnb-8bit", "adamw-bnb-8bit"] | |
| lr (`float`, defaults to `1e-4`): | |
| Initial learning rate (after the potential warmup period) to use. | |
| lr_scheduler (`str`, defaults to `cosine_with_restarts`): | |
| The scheduler type to use. Choose between ['linear', 'cosine', 'cosine_with_restarts', 'polynomial', | |
| 'constant', 'constant_with_warmup']. | |
| lr_warmup_steps (`int`, defaults to `500`): | |
| Number of steps for the warmup in the lr scheduler. | |
| lr_num_cycles (`int`, defaults to `1`): | |
| Number of hard resets of the lr in cosine_with_restarts scheduler. | |
| lr_power (`float`, defaults to `1.0`): | |
| Power factor of the polynomial scheduler. | |
| beta1 (`float`, defaults to `0.9`): | |
| beta2 (`float`, defaults to `0.95`): | |
| beta3 (`float`, defaults to `0.999`): | |
| weight_decay (`float`, defaults to `0.0001`): | |
| Penalty for large weights in the model. | |
| epsilon (`float`, defaults to `1e-8`): | |
| Small value to avoid division by zero in the optimizer. | |
| max_grad_norm (`float`, defaults to `1.0`): | |
| Maximum gradient norm to clip the gradients. | |
| VALIDATION ARGUMENTS | |
| -------------------- | |
| validation_dataset_file (`str`, defaults to `None`): | |
| Path to a CSV/JSON/PARQUET/ARROW file containing information for validation. The file must contain atleast the | |
| "caption" column. Other columns such as "image_path" and "video_path" can be provided too. If provided, "image_path" | |
| will be used to load a PIL.Image.Image and set the "image" key in the sample dictionary. Similarly, "video_path" | |
| will be used to load a List[PIL.Image.Image] and set the "video" key in the sample dictionary. | |
| The validation dataset file may contain other attributes specific to inference/validation such as: | |
| - "height" and "width" and "num_frames": Resolution | |
| - "num_inference_steps": Number of inference steps | |
| - "guidance_scale": Classifier-free Guidance Scale | |
| - ... (any number of additional attributes can be provided. The ModelSpecification::validate method will be | |
| invoked with the sample dictionary to validate the sample.) | |
| validation_steps (`int`, defaults to `500`): | |
| Number of training steps after which a validation step is performed. | |
| enable_model_cpu_offload (`bool`, defaults to `False`): | |
| Whether or not to offload different modeling components to CPU during validation. | |
| MISCELLANEOUS ARGUMENTS | |
| ----------------------- | |
| tracker_name (`str`, defaults to `finetrainers`): | |
| Name of the tracker/project to use for logging training metrics. | |
| push_to_hub (`bool`, defaults to `False`): | |
| Whether or not to push the model to the Hugging Face Hub. | |
| hub_token (`str`, defaults to `None`): | |
| The API token to use for pushing the model to the Hugging Face Hub. | |
| hub_model_id (`str`, defaults to `None`): | |
| The model identifier to use for pushing the model to the Hugging Face Hub. | |
| output_dir (`str`, defaults to `None`): | |
| The directory where the model checkpoints and logs will be stored. | |
| logging_dir (`str`, defaults to `logs`): | |
| The directory where the logs will be stored. | |
| logging_steps (`int`, defaults to `1`): | |
| Training logs will be tracked every `logging_steps` steps. | |
| allow_tf32 (`bool`, defaults to `False`): | |
| Whether or not to allow the use of TF32 matmul on compatible hardware. | |
| nccl_timeout (`int`, defaults to `1800`): | |
| Timeout for the NCCL communication. | |
| report_to (`str`, defaults to `wandb`): | |
| The name of the logger to use for logging training metrics. Choose between ['wandb']. | |
| verbose (`int`, defaults to `1`): | |
| Whether or not to print verbose logs. | |
| - 0: Diffusers/Transformers warning logging on local main process only | |
| - 1: Diffusers/Transformers info logging on local main process only | |
| - 2: Diffusers/Transformers debug logging on local main process only | |
| - 3: Diffusers/Transformers debug logging on all processes | |
| ``` | |
| ## SFT training | |
| If using `--training_type lora`, these arguments can be specified. | |
| ``` | |
| rank (int): | |
| Rank of the low rank approximation. | |
| lora_alpha (int): | |
| The lora_alpha parameter to compute scaling factor (lora_alpha / rank) for low-rank matrices. | |
| target_modules (`str` or `List[str]`): | |
| Target modules for the low rank approximation. Can be a regex string or a list of regex strings. | |
| ``` | |
| No additional arguments are required for `--training_type full-finetune`. | |
| ## Control training | |
| If using `--training_type control-lora`, these arguments can be specified. | |
| ``` | |
| control_type (`str`, defaults to `"canny"`): | |
| Control type for the low rank approximation matrices. Can be "canny", "custom". | |
| rank (int, defaults to `64`): | |
| Rank of the low rank approximation matrix. | |
| lora_alpha (int, defaults to `64`): | |
| The lora_alpha parameter to compute scaling factor (lora_alpha / rank) for low-rank matrices. | |
| target_modules (`str` or `List[str]`, defaults to `"(transformer_blocks|single_transformer_blocks).*(to_q|to_k|to_v|to_out.0|ff.net.0.proj|ff.net.2)"`): | |
| Target modules for the low rank approximation matrices. Can be a regex string or a list of regex strings. | |
| train_qk_norm (`bool`, defaults to `False`): | |
| Whether to train the QK normalization layers. | |
| frame_conditioning_type (`str`, defaults to `"full"`): | |
| Type of frame conditioning. Can be "index", "prefix", "random", "first_and_last", or "full". | |
| frame_conditioning_index (int, defaults to `0`): | |
| Index of the frame conditioning. Only used if `frame_conditioning_type` is "index". | |
| frame_conditioning_concatenate_mask (`bool`, defaults to `False`): | |
| Whether to concatenate the frame mask with the latents across channel dim. | |
| ``` | |
| If using `--training_type control-full-finetune`, these arguments can be specified. | |
| ``` | |
| control_type (`str`, defaults to `"canny"`): | |
| Control type for the low rank approximation matrices. Can be "canny", "custom". | |
| train_qk_norm (`bool`, defaults to `False`): | |
| Whether to train the QK normalization layers. | |
| frame_conditioning_type (`str`, defaults to `"index"`): | |
| Type of frame conditioning. Can be "index", "prefix", "random", "first_and_last", or "full". | |
| frame_conditioning_index (int, defaults to `0`): | |
| Index of the frame conditioning. Only used if `frame_conditioning_type` is "index". | |
| frame_conditioning_concatenate_mask (`bool`, defaults to `False`): | |
| Whether to concatenate the frame mask with the latents across channel dim. | |
| ``` | |