NegaBot-API / database.py
jatinmehra's picture
implement NegaBot API with FastAPI for tweet sentiment classification and add SQLite logging system
92a3517
"""
Database and Logging System for NegaBot API
Handles prediction logging using SQLite database
"""
import sqlite3
import json
import logging
from datetime import datetime
from typing import List, Dict
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Database configuration
DB_PATH = "negabot_predictions.db"
class PredictionLogger:
def __init__(self, db_path: str = DB_PATH):
"""
Initialize the prediction logger with SQLite database
Args:
db_path (str): Path to SQLite database file
"""
self.db_path = db_path
self.init_database()
def init_database(self):
"""Initialize the database with required tables"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
# Create predictions table
cursor.execute("""
CREATE TABLE IF NOT EXISTS predictions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
text TEXT NOT NULL,
sentiment TEXT NOT NULL,
confidence REAL NOT NULL,
predicted_class INTEGER NOT NULL,
timestamp TEXT NOT NULL,
metadata TEXT,
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
)
""")
# Create index for faster queries
cursor.execute("""
CREATE INDEX IF NOT EXISTS idx_sentiment ON predictions(sentiment)
""")
cursor.execute("""
CREATE INDEX IF NOT EXISTS idx_timestamp ON predictions(timestamp)
""")
conn.commit()
logger.info("Database initialized successfully")
except Exception as e:
logger.error(f"Error initializing database: {str(e)}")
raise e
def log_prediction(self, text: str, sentiment: str, confidence: float,
predicted_class: int = None, metadata: Dict = None):
"""
Log a prediction to the database
Args:
text (str): Input text
sentiment (str): Predicted sentiment
confidence (float): Prediction confidence
predicted_class (int): Predicted class (0 or 1)
metadata (dict): Optional metadata
"""
try:
# Infer predicted_class if not provided
if predicted_class is None:
predicted_class = 1 if sentiment == "Negative" else 0
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("""
INSERT INTO predictions (text, sentiment, confidence, predicted_class, timestamp, metadata)
VALUES (?, ?, ?, ?, ?, ?)
""", (
text,
sentiment,
confidence,
predicted_class,
datetime.now().isoformat(),
json.dumps(metadata) if metadata else None
))
conn.commit()
except Exception as e:
logger.error(f"Error logging prediction: {str(e)}")
raise e
def get_all_predictions(self, limit: int = None) -> List[Dict]:
"""
Get all predictions from the database
Args:
limit (int): Maximum number of records to return
Returns:
List of prediction dictionaries
"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
query = """
SELECT id, text, sentiment, confidence, predicted_class, timestamp, metadata, created_at
FROM predictions
ORDER BY created_at DESC
"""
if limit:
query += f" LIMIT {limit}"
cursor.execute(query)
rows = cursor.fetchall()
predictions = []
for row in rows:
prediction = {
"id": row[0],
"text": row[1],
"sentiment": row[2],
"confidence": row[3],
"predicted_class": row[4],
"timestamp": row[5],
"metadata": json.loads(row[6]) if row[6] else None,
"created_at": row[7]
}
predictions.append(prediction)
return predictions
except Exception as e:
logger.error(f"Error getting predictions: {str(e)}")
return []
def get_predictions_by_sentiment(self, sentiment: str) -> List[Dict]:
"""
Get predictions filtered by sentiment
Args:
sentiment (str): Sentiment to filter by ("Positive" or "Negative")
Returns:
List of prediction dictionaries
"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("""
SELECT id, text, sentiment, confidence, predicted_class, timestamp, metadata, created_at
FROM predictions
WHERE sentiment = ?
ORDER BY created_at DESC
""", (sentiment,))
rows = cursor.fetchall()
predictions = []
for row in rows:
prediction = {
"id": row[0],
"text": row[1],
"sentiment": row[2],
"confidence": row[3],
"predicted_class": row[4],
"timestamp": row[5],
"metadata": json.loads(row[6]) if row[6] else None,
"created_at": row[7]
}
predictions.append(prediction)
return predictions
except Exception as e:
logger.error(f"Error getting predictions by sentiment: {str(e)}")
return []
def get_stats(self) -> Dict:
"""
Get prediction statistics
Returns:
Dictionary with statistics
"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
# Total count
cursor.execute("SELECT COUNT(*) FROM predictions")
total_count = cursor.fetchone()[0]
if total_count == 0:
return {
"total_predictions": 0,
"positive_count": 0,
"negative_count": 0,
"average_confidence": 0
}
# Sentiment counts
cursor.execute("SELECT sentiment, COUNT(*) FROM predictions GROUP BY sentiment")
sentiment_counts = dict(cursor.fetchall())
# Average confidence
cursor.execute("SELECT AVG(confidence) FROM predictions")
avg_confidence = cursor.fetchone()[0]
return {
"total_predictions": total_count,
"positive_count": sentiment_counts.get("Positive", 0),
"negative_count": sentiment_counts.get("Negative", 0),
"average_confidence": round(avg_confidence, 4) if avg_confidence else 0
}
except Exception as e:
logger.error(f"Error getting stats: {str(e)}")
return {}
# Global logger instance
_logger_instance = None
def get_logger():
"""Get the global logger instance"""
global _logger_instance
if _logger_instance is None:
_logger_instance = PredictionLogger()
return _logger_instance
def log_prediction(text: str, sentiment: str, confidence: float, metadata: Dict = None):
"""Convenience function to log a prediction"""
logger_instance = get_logger()
logger_instance.log_prediction(text, sentiment, confidence, metadata=metadata)
def get_all_predictions(limit: int = None) -> List[Dict]:
"""Convenience function to get all predictions"""
logger_instance = get_logger()
return logger_instance.get_all_predictions(limit=limit)
def get_predictions_by_sentiment(sentiment: str) -> List[Dict]:
"""Convenience function to get predictions by sentiment"""
logger_instance = get_logger()
return logger_instance.get_predictions_by_sentiment(sentiment)
def get_prediction_stats() -> Dict:
"""Convenience function to get prediction statistics"""
logger_instance = get_logger()
return logger_instance.get_stats()
if __name__ == "__main__":
# Test the logging system
logger_instance = PredictionLogger()
# Test logging
test_predictions = [
("This product is amazing!", "Positive", 0.95),
("Terrible quality, waste of money", "Negative", 0.89),
("It's okay, nothing special", "Positive", 0.67),
("Awful customer service", "Negative", 0.92)
]
print("Testing prediction logging...")
for text, sentiment, confidence in test_predictions:
logger_instance.log_prediction(text, sentiment, confidence)
print(f"Logged: {sentiment} - {text}")
# Test retrieval
print("\nRetrieving all predictions:")
predictions = logger_instance.get_all_predictions()
for pred in predictions:
print(f"ID: {pred['id']}, Sentiment: {pred['sentiment']}, Text: {pred['text'][:50]}...")
# Test stats
print("\nPrediction statistics:")
stats = logger_instance.get_stats()
print(json.dumps(stats, indent=2))