Spaces:
Sleeping
Sleeping
Commit
·
92a3517
1
Parent(s):
c182bba
implement NegaBot API with FastAPI for tweet sentiment classification and add SQLite logging system
Browse files- api.py +632 -0
- database.py +289 -0
api.py
ADDED
@@ -0,0 +1,632 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
NegaBot API - FastAPI application for tweet sentiment classification
|
3 |
+
"""
|
4 |
+
from fastapi import FastAPI, HTTPException
|
5 |
+
from fastapi.responses import HTMLResponse, Response
|
6 |
+
from pydantic import BaseModel, Field
|
7 |
+
from typing import List, Optional
|
8 |
+
import logging
|
9 |
+
from datetime import datetime
|
10 |
+
import json
|
11 |
+
from model import get_model
|
12 |
+
from database import log_prediction, get_all_predictions
|
13 |
+
|
14 |
+
# Configure logging
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
# Initialize FastAPI app
|
19 |
+
app = FastAPI(
|
20 |
+
title="NegaBot API",
|
21 |
+
description="Tweet Sentiment Classification API using NegaBot model",
|
22 |
+
version="1.0.0"
|
23 |
+
)
|
24 |
+
|
25 |
+
# Pydantic models for request/response validation
|
26 |
+
class TweetRequest(BaseModel):
|
27 |
+
text: str = Field(..., min_length=1, max_length=1000, description="Tweet text to analyze")
|
28 |
+
metadata: Optional[dict] = Field(default=None, description="Optional metadata")
|
29 |
+
|
30 |
+
class TweetResponse(BaseModel):
|
31 |
+
text: str
|
32 |
+
sentiment: str
|
33 |
+
confidence: float
|
34 |
+
predicted_class: int
|
35 |
+
probabilities: dict
|
36 |
+
timestamp: str
|
37 |
+
request_id: Optional[str] = None
|
38 |
+
|
39 |
+
class BatchTweetRequest(BaseModel):
|
40 |
+
tweets: List[str] = Field(..., min_items=1, max_items=50, description="List of tweets to analyze")
|
41 |
+
metadata: Optional[dict] = Field(default=None, description="Optional metadata")
|
42 |
+
|
43 |
+
class BatchTweetResponse(BaseModel):
|
44 |
+
results: List[TweetResponse]
|
45 |
+
total_processed: int
|
46 |
+
timestamp: str
|
47 |
+
|
48 |
+
class HealthResponse(BaseModel):
|
49 |
+
status: str
|
50 |
+
model_loaded: bool
|
51 |
+
timestamp: str
|
52 |
+
|
53 |
+
# Global variables
|
54 |
+
model = None
|
55 |
+
|
56 |
+
@app.on_event("startup")
|
57 |
+
async def startup_event():
|
58 |
+
"""Initialize the model on startup"""
|
59 |
+
global model
|
60 |
+
try:
|
61 |
+
logger.info("Starting NegaBot API...")
|
62 |
+
model = get_model()
|
63 |
+
logger.info("Model loaded successfully")
|
64 |
+
except Exception as e:
|
65 |
+
logger.error(f"Failed to load model: {str(e)}")
|
66 |
+
raise e
|
67 |
+
|
68 |
+
@app.get("/", response_model=dict)
|
69 |
+
async def root():
|
70 |
+
"""Root endpoint with API information"""
|
71 |
+
return {
|
72 |
+
"message": "Welcome to NegaBot API",
|
73 |
+
"version": "1.0.0",
|
74 |
+
"description": "Tweet Sentiment Classification using NegaBot model",
|
75 |
+
"endpoints": {
|
76 |
+
"predict": "/predict - Single tweet prediction",
|
77 |
+
"batch_predict": "/batch_predict - Multiple tweets prediction",
|
78 |
+
"health": "/health - API health check",
|
79 |
+
"stats": "/stats - Prediction statistics",
|
80 |
+
"dashboard": "/dashboard - Interactive analytics dashboard",
|
81 |
+
"dashboard_data": "/dashboard/data - Dashboard data as JSON",
|
82 |
+
"download_csv": "/download/predictions.csv - Download predictions as CSV",
|
83 |
+
"download_json": "/download/predictions.json - Download predictions as JSON"
|
84 |
+
}
|
85 |
+
}
|
86 |
+
|
87 |
+
@app.get("/health", response_model=HealthResponse)
|
88 |
+
async def health_check():
|
89 |
+
"""Health check endpoint"""
|
90 |
+
return HealthResponse(
|
91 |
+
status="healthy" if model is not None else "unhealthy",
|
92 |
+
model_loaded=model is not None,
|
93 |
+
timestamp=datetime.now().isoformat()
|
94 |
+
)
|
95 |
+
|
96 |
+
@app.post("/predict", response_model=TweetResponse)
|
97 |
+
async def predict_sentiment(request: TweetRequest):
|
98 |
+
"""
|
99 |
+
Predict sentiment for a single tweet
|
100 |
+
|
101 |
+
Args:
|
102 |
+
request: TweetRequest containing the tweet text
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
TweetResponse with prediction results
|
106 |
+
"""
|
107 |
+
try:
|
108 |
+
if model is None:
|
109 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
110 |
+
|
111 |
+
# Get prediction from model
|
112 |
+
result = model.predict(request.text)
|
113 |
+
|
114 |
+
# Create response
|
115 |
+
response = TweetResponse(
|
116 |
+
text=result["text"],
|
117 |
+
sentiment=result["sentiment"],
|
118 |
+
confidence=result["confidence"],
|
119 |
+
predicted_class=result["predicted_class"],
|
120 |
+
probabilities=result["probabilities"],
|
121 |
+
timestamp=datetime.now().isoformat()
|
122 |
+
)
|
123 |
+
|
124 |
+
# Log the prediction
|
125 |
+
log_prediction(
|
126 |
+
text=request.text,
|
127 |
+
sentiment=result["sentiment"],
|
128 |
+
confidence=result["confidence"],
|
129 |
+
metadata=request.metadata
|
130 |
+
)
|
131 |
+
|
132 |
+
logger.info(f"Prediction made: {result['sentiment']} (confidence: {result['confidence']:.2%})")
|
133 |
+
return response
|
134 |
+
|
135 |
+
except Exception as e:
|
136 |
+
logger.error(f"Error in prediction: {str(e)}")
|
137 |
+
raise HTTPException(status_code=500, detail=f"Prediction failed: {str(e)}")
|
138 |
+
|
139 |
+
@app.post("/batch_predict", response_model=BatchTweetResponse)
|
140 |
+
async def batch_predict_sentiment(request: BatchTweetRequest):
|
141 |
+
"""
|
142 |
+
Predict sentiment for multiple tweets
|
143 |
+
|
144 |
+
Args:
|
145 |
+
request: BatchTweetRequest containing list of tweets
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
BatchTweetResponse with all prediction results
|
149 |
+
"""
|
150 |
+
try:
|
151 |
+
if model is None:
|
152 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
153 |
+
|
154 |
+
# Get predictions for all tweets
|
155 |
+
results = model.batch_predict(request.tweets)
|
156 |
+
|
157 |
+
# Create response objects
|
158 |
+
responses = []
|
159 |
+
for result in results:
|
160 |
+
response = TweetResponse(
|
161 |
+
text=result["text"],
|
162 |
+
sentiment=result["sentiment"],
|
163 |
+
confidence=result["confidence"],
|
164 |
+
predicted_class=result["predicted_class"],
|
165 |
+
probabilities=result["probabilities"],
|
166 |
+
timestamp=datetime.now().isoformat()
|
167 |
+
)
|
168 |
+
responses.append(response)
|
169 |
+
|
170 |
+
# Log each prediction
|
171 |
+
log_prediction(
|
172 |
+
text=result["text"],
|
173 |
+
sentiment=result["sentiment"],
|
174 |
+
confidence=result["confidence"],
|
175 |
+
metadata=request.metadata
|
176 |
+
)
|
177 |
+
|
178 |
+
batch_response = BatchTweetResponse(
|
179 |
+
results=responses,
|
180 |
+
total_processed=len(responses),
|
181 |
+
timestamp=datetime.now().isoformat()
|
182 |
+
)
|
183 |
+
|
184 |
+
logger.info(f"Batch prediction completed: {len(responses)} tweets processed")
|
185 |
+
return batch_response
|
186 |
+
|
187 |
+
except Exception as e:
|
188 |
+
logger.error(f"Error in batch prediction: {str(e)}")
|
189 |
+
raise HTTPException(status_code=500, detail=f"Batch prediction failed: {str(e)}")
|
190 |
+
|
191 |
+
@app.get("/stats", response_model=dict)
|
192 |
+
async def get_prediction_stats():
|
193 |
+
"""
|
194 |
+
Get prediction statistics
|
195 |
+
|
196 |
+
Returns:
|
197 |
+
Dictionary with prediction statistics
|
198 |
+
"""
|
199 |
+
try:
|
200 |
+
predictions = get_all_predictions()
|
201 |
+
|
202 |
+
if not predictions:
|
203 |
+
return {
|
204 |
+
"total_predictions": 0,
|
205 |
+
"positive_count": 0,
|
206 |
+
"negative_count": 0,
|
207 |
+
"average_confidence": 0,
|
208 |
+
"message": "No predictions found"
|
209 |
+
}
|
210 |
+
|
211 |
+
total = len(predictions)
|
212 |
+
positive_count = sum(1 for p in predictions if p["sentiment"] == "Positive")
|
213 |
+
negative_count = total - positive_count
|
214 |
+
avg_confidence = sum(p["confidence"] for p in predictions) / total
|
215 |
+
|
216 |
+
stats = {
|
217 |
+
"total_predictions": total,
|
218 |
+
"positive_count": positive_count,
|
219 |
+
"negative_count": negative_count,
|
220 |
+
"positive_percentage": round((positive_count / total) * 100, 2),
|
221 |
+
"negative_percentage": round((negative_count / total) * 100, 2),
|
222 |
+
"average_confidence": round(avg_confidence, 4),
|
223 |
+
"last_updated": datetime.now().isoformat()
|
224 |
+
}
|
225 |
+
|
226 |
+
return stats
|
227 |
+
|
228 |
+
except Exception as e:
|
229 |
+
logger.error(f"Error getting stats: {str(e)}")
|
230 |
+
raise HTTPException(status_code=500, detail=f"Failed to get statistics: {str(e)}")
|
231 |
+
|
232 |
+
@app.get("/dashboard/data", response_model=dict)
|
233 |
+
async def get_dashboard_data():
|
234 |
+
"""
|
235 |
+
Get dashboard data as JSON for API consumption
|
236 |
+
"""
|
237 |
+
try:
|
238 |
+
predictions = get_all_predictions()
|
239 |
+
|
240 |
+
if not predictions:
|
241 |
+
return {
|
242 |
+
"metrics": {
|
243 |
+
"total_predictions": 0,
|
244 |
+
"positive_count": 0,
|
245 |
+
"negative_count": 0,
|
246 |
+
"average_confidence": 0
|
247 |
+
},
|
248 |
+
"recent_predictions": [],
|
249 |
+
"message": "No predictions found"
|
250 |
+
}
|
251 |
+
|
252 |
+
# Calculate metrics
|
253 |
+
total = len(predictions)
|
254 |
+
positive_count = sum(1 for p in predictions if p["sentiment"] == "Positive")
|
255 |
+
negative_count = total - positive_count
|
256 |
+
avg_confidence = sum(p["confidence"] for p in predictions) / total
|
257 |
+
|
258 |
+
# Get recent predictions (last 20)
|
259 |
+
recent_predictions = sorted(predictions, key=lambda x: x["created_at"], reverse=True)[:20]
|
260 |
+
|
261 |
+
return {
|
262 |
+
"metrics": {
|
263 |
+
"total_predictions": total,
|
264 |
+
"positive_count": positive_count,
|
265 |
+
"negative_count": negative_count,
|
266 |
+
"positive_percentage": round((positive_count / total) * 100, 2),
|
267 |
+
"negative_percentage": round((negative_count / total) * 100, 2),
|
268 |
+
"average_confidence": round(avg_confidence, 4)
|
269 |
+
},
|
270 |
+
"recent_predictions": recent_predictions,
|
271 |
+
"last_updated": datetime.now().isoformat()
|
272 |
+
}
|
273 |
+
|
274 |
+
except Exception as e:
|
275 |
+
logger.error(f"Error getting dashboard data: {str(e)}")
|
276 |
+
raise HTTPException(status_code=500, detail=f"Failed to get dashboard data: {str(e)}")
|
277 |
+
|
278 |
+
@app.get("/download/predictions.csv")
|
279 |
+
async def download_predictions_csv():
|
280 |
+
"""
|
281 |
+
Download all predictions as CSV file
|
282 |
+
"""
|
283 |
+
try:
|
284 |
+
predictions = get_all_predictions()
|
285 |
+
|
286 |
+
if not predictions:
|
287 |
+
raise HTTPException(status_code=404, detail="No predictions found to download")
|
288 |
+
|
289 |
+
# Convert to pandas DataFrame for easy CSV export
|
290 |
+
import pandas as pd
|
291 |
+
df = pd.DataFrame(predictions)
|
292 |
+
|
293 |
+
# Convert to CSV
|
294 |
+
csv_content = df.to_csv(index=False)
|
295 |
+
|
296 |
+
# Generate filename with timestamp
|
297 |
+
filename = f"negabot_predictions_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
|
298 |
+
|
299 |
+
return Response(
|
300 |
+
content=csv_content,
|
301 |
+
media_type="text/csv",
|
302 |
+
headers={"Content-Disposition": f"attachment; filename={filename}"}
|
303 |
+
)
|
304 |
+
|
305 |
+
except Exception as e:
|
306 |
+
logger.error(f"Error downloading CSV: {str(e)}")
|
307 |
+
raise HTTPException(status_code=500, detail=f"Failed to download CSV: {str(e)}")
|
308 |
+
|
309 |
+
@app.get("/download/predictions.json")
|
310 |
+
async def download_predictions_json():
|
311 |
+
"""
|
312 |
+
Download all predictions as JSON file
|
313 |
+
"""
|
314 |
+
try:
|
315 |
+
predictions = get_all_predictions()
|
316 |
+
|
317 |
+
if not predictions:
|
318 |
+
raise HTTPException(status_code=404, detail="No predictions found to download")
|
319 |
+
|
320 |
+
# Convert to JSON
|
321 |
+
json_content = json.dumps(predictions, indent=2, default=str)
|
322 |
+
|
323 |
+
# Generate filename with timestamp
|
324 |
+
filename = f"negabot_predictions_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
325 |
+
|
326 |
+
return Response(
|
327 |
+
content=json_content,
|
328 |
+
media_type="application/json",
|
329 |
+
headers={"Content-Disposition": f"attachment; filename={filename}"}
|
330 |
+
)
|
331 |
+
|
332 |
+
except Exception as e:
|
333 |
+
logger.error(f"Error downloading JSON: {str(e)}")
|
334 |
+
raise HTTPException(status_code=500, detail=f"Failed to download JSON: {str(e)}")
|
335 |
+
|
336 |
+
@app.get("/dashboard", response_class=HTMLResponse)
|
337 |
+
async def dashboard():
|
338 |
+
"""
|
339 |
+
Serve the analytics dashboard as HTML
|
340 |
+
"""
|
341 |
+
try:
|
342 |
+
import pandas as pd
|
343 |
+
import plotly.express as px
|
344 |
+
import plotly.graph_objects as go
|
345 |
+
|
346 |
+
# Get prediction data
|
347 |
+
predictions = get_all_predictions()
|
348 |
+
|
349 |
+
if not predictions:
|
350 |
+
html_content = """
|
351 |
+
<!DOCTYPE html>
|
352 |
+
<html>
|
353 |
+
<head>
|
354 |
+
<title>NegaBot Dashboard</title>
|
355 |
+
<style>
|
356 |
+
body { font-family: Arial, sans-serif; margin: 40px; }
|
357 |
+
.container { max-width: 800px; margin: 0 auto; text-align: center; }
|
358 |
+
.warning { background-color: #fff3cd; border: 1px solid #ffeaa7; padding: 20px; border-radius: 8px; }
|
359 |
+
</style>
|
360 |
+
</head>
|
361 |
+
<body>
|
362 |
+
<div class="container">
|
363 |
+
<h1>🤖 NegaBot Analytics Dashboard</h1>
|
364 |
+
<div class="warning">
|
365 |
+
<h3>📭 No prediction data found</h3>
|
366 |
+
<p>Make some predictions using the API first!</p>
|
367 |
+
<p><strong>Quick Start:</strong></p>
|
368 |
+
<ol>
|
369 |
+
<li>Use POST to <code>/predict</code> endpoint</li>
|
370 |
+
<li>Refresh this dashboard to see analytics</li>
|
371 |
+
</ol>
|
372 |
+
<p><strong>Available downloads:</strong></p>
|
373 |
+
<p>
|
374 |
+
<a href="/download/predictions.csv" style="color: #007bff; text-decoration: none;">📥 CSV Format</a> |
|
375 |
+
<a href="/download/predictions.json" style="color: #007bff; text-decoration: none;">📥 JSON Format</a>
|
376 |
+
</p>
|
377 |
+
</div>
|
378 |
+
</div>
|
379 |
+
</body>
|
380 |
+
</html>
|
381 |
+
"""
|
382 |
+
return HTMLResponse(content=html_content)
|
383 |
+
|
384 |
+
# Process data
|
385 |
+
df = pd.DataFrame(predictions)
|
386 |
+
df['created_at'] = pd.to_datetime(df['created_at'])
|
387 |
+
|
388 |
+
# Calculate metrics
|
389 |
+
total_predictions = len(df)
|
390 |
+
positive_count = len(df[df['sentiment'] == 'Positive'])
|
391 |
+
negative_count = total_predictions - positive_count
|
392 |
+
avg_confidence = df['confidence'].mean()
|
393 |
+
|
394 |
+
# Create sentiment distribution chart
|
395 |
+
sentiment_counts = df['sentiment'].value_counts()
|
396 |
+
fig_pie = px.pie(
|
397 |
+
values=sentiment_counts.values,
|
398 |
+
names=sentiment_counts.index,
|
399 |
+
title="Sentiment Distribution",
|
400 |
+
color_discrete_map={'Positive': '#2E8B57', 'Negative': '#DC143C'}
|
401 |
+
)
|
402 |
+
pie_html = fig_pie.to_html(include_plotlyjs='cdn', div_id="sentiment-pie")
|
403 |
+
|
404 |
+
# Create confidence distribution chart
|
405 |
+
fig_hist = px.histogram(
|
406 |
+
df,
|
407 |
+
x='confidence',
|
408 |
+
nbins=20,
|
409 |
+
title="Confidence Score Distribution",
|
410 |
+
color='sentiment',
|
411 |
+
color_discrete_map={'Positive': '#2E8B57', 'Negative': '#DC143C'}
|
412 |
+
)
|
413 |
+
hist_html = fig_hist.to_html(include_plotlyjs='cdn', div_id="confidence-hist")
|
414 |
+
|
415 |
+
# Generate recent predictions table
|
416 |
+
recent_df = df.head(10).copy()
|
417 |
+
recent_df['text'] = recent_df['text'].str[:100] + '...'
|
418 |
+
recent_df['confidence'] = recent_df['confidence'].apply(lambda x: f"{x:.2%}")
|
419 |
+
recent_df['created_at'] = recent_df['created_at'].dt.strftime('%Y-%m-%d %H:%M:%S')
|
420 |
+
|
421 |
+
table_rows = ""
|
422 |
+
for _, row in recent_df.iterrows():
|
423 |
+
sentiment_class = "positive" if row['sentiment'] == 'Positive' else "negative"
|
424 |
+
table_rows += f"""
|
425 |
+
<tr>
|
426 |
+
<td>{row['created_at']}</td>
|
427 |
+
<td style="max-width: 300px;">{row['text']}</td>
|
428 |
+
<td><span class="sentiment {sentiment_class}">{row['sentiment']}</span></td>
|
429 |
+
<td>{row['confidence']}</td>
|
430 |
+
</tr>
|
431 |
+
"""
|
432 |
+
|
433 |
+
# HTML template
|
434 |
+
html_content = f"""
|
435 |
+
<!DOCTYPE html>
|
436 |
+
<html>
|
437 |
+
<head>
|
438 |
+
<title>NegaBot Analytics Dashboard</title>
|
439 |
+
<meta charset="utf-8">
|
440 |
+
<meta name="viewport" content="width=device-width, initial-scale=1">
|
441 |
+
<style>
|
442 |
+
body {{
|
443 |
+
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', sans-serif;
|
444 |
+
margin: 0;
|
445 |
+
padding: 20px;
|
446 |
+
background-color: #f8f9fa;
|
447 |
+
}}
|
448 |
+
.container {{
|
449 |
+
max-width: 1200px;
|
450 |
+
margin: 0 auto;
|
451 |
+
}}
|
452 |
+
.header {{
|
453 |
+
text-align: center;
|
454 |
+
color: #1f77b4;
|
455 |
+
margin-bottom: 30px;
|
456 |
+
}}
|
457 |
+
.metrics-grid {{
|
458 |
+
display: grid;
|
459 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
460 |
+
gap: 20px;
|
461 |
+
margin-bottom: 30px;
|
462 |
+
}}
|
463 |
+
.metric-card {{
|
464 |
+
background: white;
|
465 |
+
padding: 20px;
|
466 |
+
border-radius: 8px;
|
467 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
468 |
+
text-align: center;
|
469 |
+
}}
|
470 |
+
.metric-value {{
|
471 |
+
font-size: 2em;
|
472 |
+
font-weight: bold;
|
473 |
+
color: #1f77b4;
|
474 |
+
}}
|
475 |
+
.metric-label {{
|
476 |
+
color: #666;
|
477 |
+
margin-top: 5px;
|
478 |
+
}}
|
479 |
+
.charts-grid {{
|
480 |
+
display: grid;
|
481 |
+
grid-template-columns: 1fr 1fr;
|
482 |
+
gap: 20px;
|
483 |
+
margin-bottom: 30px;
|
484 |
+
}}
|
485 |
+
.chart-container {{
|
486 |
+
background: white;
|
487 |
+
padding: 20px;
|
488 |
+
border-radius: 8px;
|
489 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
490 |
+
}}
|
491 |
+
.table-container {{
|
492 |
+
background: white;
|
493 |
+
padding: 20px;
|
494 |
+
border-radius: 8px;
|
495 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
496 |
+
overflow-x: auto;
|
497 |
+
}}
|
498 |
+
table {{
|
499 |
+
width: 100%;
|
500 |
+
border-collapse: collapse;
|
501 |
+
}}
|
502 |
+
th, td {{
|
503 |
+
padding: 12px;
|
504 |
+
text-align: left;
|
505 |
+
border-bottom: 1px solid #eee;
|
506 |
+
}}
|
507 |
+
th {{
|
508 |
+
background-color: #f8f9fa;
|
509 |
+
font-weight: 600;
|
510 |
+
}}
|
511 |
+
.sentiment.positive {{
|
512 |
+
background-color: #d4edda;
|
513 |
+
color: #155724;
|
514 |
+
padding: 4px 8px;
|
515 |
+
border-radius: 4px;
|
516 |
+
font-size: 0.9em;
|
517 |
+
}}
|
518 |
+
.sentiment.negative {{
|
519 |
+
background-color: #f8d7da;
|
520 |
+
color: #721c24;
|
521 |
+
padding: 4px 8px;
|
522 |
+
border-radius: 4px;
|
523 |
+
font-size: 0.9em;
|
524 |
+
}}
|
525 |
+
.refresh-btn {{
|
526 |
+
background-color: #1f77b4;
|
527 |
+
color: white;
|
528 |
+
border: none;
|
529 |
+
padding: 10px 20px;
|
530 |
+
border-radius: 4px;
|
531 |
+
cursor: pointer;
|
532 |
+
font-size: 14px;
|
533 |
+
margin-bottom: 20px;
|
534 |
+
}}
|
535 |
+
.refresh-btn:hover {{
|
536 |
+
background-color: #1865a0;
|
537 |
+
}}
|
538 |
+
.download-btn {{
|
539 |
+
background-color: #28a745;
|
540 |
+
color: white;
|
541 |
+
text-decoration: none;
|
542 |
+
padding: 8px 16px;
|
543 |
+
border-radius: 4px;
|
544 |
+
font-size: 14px;
|
545 |
+
display: inline-block;
|
546 |
+
transition: background-color 0.2s;
|
547 |
+
}}
|
548 |
+
.download-btn:hover {{
|
549 |
+
background-color: #218838;
|
550 |
+
text-decoration: none;
|
551 |
+
color: white;
|
552 |
+
}}
|
553 |
+
@media (max-width: 768px) {{
|
554 |
+
.charts-grid {{
|
555 |
+
grid-template-columns: 1fr;
|
556 |
+
}}
|
557 |
+
}}
|
558 |
+
</style>
|
559 |
+
</head>
|
560 |
+
<body>
|
561 |
+
<div class="container">
|
562 |
+
<div class="header">
|
563 |
+
<h1>🤖 NegaBot Analytics Dashboard</h1>
|
564 |
+
<button class="refresh-btn" onclick="location.reload()">🔄 Refresh Data</button>
|
565 |
+
</div>
|
566 |
+
|
567 |
+
<div class="metrics-grid">
|
568 |
+
<div class="metric-card">
|
569 |
+
<div class="metric-value">{total_predictions}</div>
|
570 |
+
<div class="metric-label">📊 Total Predictions</div>
|
571 |
+
</div>
|
572 |
+
<div class="metric-card">
|
573 |
+
<div class="metric-value">{positive_count}</div>
|
574 |
+
<div class="metric-label">😊 Positive</div>
|
575 |
+
</div>
|
576 |
+
<div class="metric-card">
|
577 |
+
<div class="metric-value">{negative_count}</div>
|
578 |
+
<div class="metric-label">😞 Negative</div>
|
579 |
+
</div>
|
580 |
+
<div class="metric-card">
|
581 |
+
<div class="metric-value">{avg_confidence:.1%}</div>
|
582 |
+
<div class="metric-label">🎯 Avg Confidence</div>
|
583 |
+
</div>
|
584 |
+
</div>
|
585 |
+
|
586 |
+
<div class="charts-grid">
|
587 |
+
<div class="chart-container">
|
588 |
+
{pie_html}
|
589 |
+
</div>
|
590 |
+
<div class="chart-container">
|
591 |
+
{hist_html}
|
592 |
+
</div>
|
593 |
+
</div>
|
594 |
+
|
595 |
+
<div class="table-container">
|
596 |
+
<h3>📝 Recent Predictions</h3>
|
597 |
+
<div style="margin-bottom: 15px;">
|
598 |
+
<a href="/download/predictions.csv" class="download-btn" style="margin-right: 10px;">📥 Download CSV</a>
|
599 |
+
<a href="/download/predictions.json" class="download-btn">📥 Download JSON</a>
|
600 |
+
</div>
|
601 |
+
<table>
|
602 |
+
<thead>
|
603 |
+
<tr>
|
604 |
+
<th>Timestamp</th>
|
605 |
+
<th>Tweet Text</th>
|
606 |
+
<th>Sentiment</th>
|
607 |
+
<th>Confidence</th>
|
608 |
+
</tr>
|
609 |
+
</thead>
|
610 |
+
<tbody>
|
611 |
+
{table_rows}
|
612 |
+
</tbody>
|
613 |
+
</table>
|
614 |
+
</div>
|
615 |
+
|
616 |
+
<div style="text-align: center; margin-top: 30px; color: #666; font-size: 0.9em;">
|
617 |
+
🤖 NegaBot Analytics Dashboard | Last updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
|
618 |
+
</div>
|
619 |
+
</div>
|
620 |
+
</body>
|
621 |
+
</html>
|
622 |
+
"""
|
623 |
+
|
624 |
+
return HTMLResponse(content=html_content)
|
625 |
+
|
626 |
+
except Exception as e:
|
627 |
+
logger.error(f"Error generating dashboard: {str(e)}")
|
628 |
+
raise HTTPException(status_code=500, detail=f"Failed to generate dashboard: {str(e)}")
|
629 |
+
|
630 |
+
if __name__ == "__main__":
|
631 |
+
import uvicorn
|
632 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
database.py
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Database and Logging System for NegaBot API
|
3 |
+
Handles prediction logging using SQLite database
|
4 |
+
"""
|
5 |
+
import sqlite3
|
6 |
+
import json
|
7 |
+
import logging
|
8 |
+
from datetime import datetime
|
9 |
+
from typing import List, Dict
|
10 |
+
|
11 |
+
# Configure logging
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
# Database configuration
|
16 |
+
DB_PATH = "negabot_predictions.db"
|
17 |
+
|
18 |
+
class PredictionLogger:
|
19 |
+
def __init__(self, db_path: str = DB_PATH):
|
20 |
+
"""
|
21 |
+
Initialize the prediction logger with SQLite database
|
22 |
+
|
23 |
+
Args:
|
24 |
+
db_path (str): Path to SQLite database file
|
25 |
+
"""
|
26 |
+
self.db_path = db_path
|
27 |
+
self.init_database()
|
28 |
+
|
29 |
+
def init_database(self):
|
30 |
+
"""Initialize the database with required tables"""
|
31 |
+
try:
|
32 |
+
with sqlite3.connect(self.db_path) as conn:
|
33 |
+
cursor = conn.cursor()
|
34 |
+
|
35 |
+
# Create predictions table
|
36 |
+
cursor.execute("""
|
37 |
+
CREATE TABLE IF NOT EXISTS predictions (
|
38 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
39 |
+
text TEXT NOT NULL,
|
40 |
+
sentiment TEXT NOT NULL,
|
41 |
+
confidence REAL NOT NULL,
|
42 |
+
predicted_class INTEGER NOT NULL,
|
43 |
+
timestamp TEXT NOT NULL,
|
44 |
+
metadata TEXT,
|
45 |
+
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
|
46 |
+
)
|
47 |
+
""")
|
48 |
+
|
49 |
+
# Create index for faster queries
|
50 |
+
cursor.execute("""
|
51 |
+
CREATE INDEX IF NOT EXISTS idx_sentiment ON predictions(sentiment)
|
52 |
+
""")
|
53 |
+
cursor.execute("""
|
54 |
+
CREATE INDEX IF NOT EXISTS idx_timestamp ON predictions(timestamp)
|
55 |
+
""")
|
56 |
+
|
57 |
+
conn.commit()
|
58 |
+
logger.info("Database initialized successfully")
|
59 |
+
|
60 |
+
except Exception as e:
|
61 |
+
logger.error(f"Error initializing database: {str(e)}")
|
62 |
+
raise e
|
63 |
+
|
64 |
+
def log_prediction(self, text: str, sentiment: str, confidence: float,
|
65 |
+
predicted_class: int = None, metadata: Dict = None):
|
66 |
+
"""
|
67 |
+
Log a prediction to the database
|
68 |
+
|
69 |
+
Args:
|
70 |
+
text (str): Input text
|
71 |
+
sentiment (str): Predicted sentiment
|
72 |
+
confidence (float): Prediction confidence
|
73 |
+
predicted_class (int): Predicted class (0 or 1)
|
74 |
+
metadata (dict): Optional metadata
|
75 |
+
"""
|
76 |
+
try:
|
77 |
+
# Infer predicted_class if not provided
|
78 |
+
if predicted_class is None:
|
79 |
+
predicted_class = 1 if sentiment == "Negative" else 0
|
80 |
+
|
81 |
+
with sqlite3.connect(self.db_path) as conn:
|
82 |
+
cursor = conn.cursor()
|
83 |
+
|
84 |
+
cursor.execute("""
|
85 |
+
INSERT INTO predictions (text, sentiment, confidence, predicted_class, timestamp, metadata)
|
86 |
+
VALUES (?, ?, ?, ?, ?, ?)
|
87 |
+
""", (
|
88 |
+
text,
|
89 |
+
sentiment,
|
90 |
+
confidence,
|
91 |
+
predicted_class,
|
92 |
+
datetime.now().isoformat(),
|
93 |
+
json.dumps(metadata) if metadata else None
|
94 |
+
))
|
95 |
+
|
96 |
+
conn.commit()
|
97 |
+
|
98 |
+
except Exception as e:
|
99 |
+
logger.error(f"Error logging prediction: {str(e)}")
|
100 |
+
raise e
|
101 |
+
|
102 |
+
def get_all_predictions(self, limit: int = None) -> List[Dict]:
|
103 |
+
"""
|
104 |
+
Get all predictions from the database
|
105 |
+
|
106 |
+
Args:
|
107 |
+
limit (int): Maximum number of records to return
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
List of prediction dictionaries
|
111 |
+
"""
|
112 |
+
try:
|
113 |
+
with sqlite3.connect(self.db_path) as conn:
|
114 |
+
cursor = conn.cursor()
|
115 |
+
|
116 |
+
query = """
|
117 |
+
SELECT id, text, sentiment, confidence, predicted_class, timestamp, metadata, created_at
|
118 |
+
FROM predictions
|
119 |
+
ORDER BY created_at DESC
|
120 |
+
"""
|
121 |
+
|
122 |
+
if limit:
|
123 |
+
query += f" LIMIT {limit}"
|
124 |
+
|
125 |
+
cursor.execute(query)
|
126 |
+
rows = cursor.fetchall()
|
127 |
+
|
128 |
+
predictions = []
|
129 |
+
for row in rows:
|
130 |
+
prediction = {
|
131 |
+
"id": row[0],
|
132 |
+
"text": row[1],
|
133 |
+
"sentiment": row[2],
|
134 |
+
"confidence": row[3],
|
135 |
+
"predicted_class": row[4],
|
136 |
+
"timestamp": row[5],
|
137 |
+
"metadata": json.loads(row[6]) if row[6] else None,
|
138 |
+
"created_at": row[7]
|
139 |
+
}
|
140 |
+
predictions.append(prediction)
|
141 |
+
|
142 |
+
return predictions
|
143 |
+
|
144 |
+
except Exception as e:
|
145 |
+
logger.error(f"Error getting predictions: {str(e)}")
|
146 |
+
return []
|
147 |
+
|
148 |
+
def get_predictions_by_sentiment(self, sentiment: str) -> List[Dict]:
|
149 |
+
"""
|
150 |
+
Get predictions filtered by sentiment
|
151 |
+
|
152 |
+
Args:
|
153 |
+
sentiment (str): Sentiment to filter by ("Positive" or "Negative")
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
List of prediction dictionaries
|
157 |
+
"""
|
158 |
+
try:
|
159 |
+
with sqlite3.connect(self.db_path) as conn:
|
160 |
+
cursor = conn.cursor()
|
161 |
+
|
162 |
+
cursor.execute("""
|
163 |
+
SELECT id, text, sentiment, confidence, predicted_class, timestamp, metadata, created_at
|
164 |
+
FROM predictions
|
165 |
+
WHERE sentiment = ?
|
166 |
+
ORDER BY created_at DESC
|
167 |
+
""", (sentiment,))
|
168 |
+
|
169 |
+
rows = cursor.fetchall()
|
170 |
+
|
171 |
+
predictions = []
|
172 |
+
for row in rows:
|
173 |
+
prediction = {
|
174 |
+
"id": row[0],
|
175 |
+
"text": row[1],
|
176 |
+
"sentiment": row[2],
|
177 |
+
"confidence": row[3],
|
178 |
+
"predicted_class": row[4],
|
179 |
+
"timestamp": row[5],
|
180 |
+
"metadata": json.loads(row[6]) if row[6] else None,
|
181 |
+
"created_at": row[7]
|
182 |
+
}
|
183 |
+
predictions.append(prediction)
|
184 |
+
|
185 |
+
return predictions
|
186 |
+
|
187 |
+
except Exception as e:
|
188 |
+
logger.error(f"Error getting predictions by sentiment: {str(e)}")
|
189 |
+
return []
|
190 |
+
|
191 |
+
def get_stats(self) -> Dict:
|
192 |
+
"""
|
193 |
+
Get prediction statistics
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
Dictionary with statistics
|
197 |
+
"""
|
198 |
+
try:
|
199 |
+
with sqlite3.connect(self.db_path) as conn:
|
200 |
+
cursor = conn.cursor()
|
201 |
+
|
202 |
+
# Total count
|
203 |
+
cursor.execute("SELECT COUNT(*) FROM predictions")
|
204 |
+
total_count = cursor.fetchone()[0]
|
205 |
+
|
206 |
+
if total_count == 0:
|
207 |
+
return {
|
208 |
+
"total_predictions": 0,
|
209 |
+
"positive_count": 0,
|
210 |
+
"negative_count": 0,
|
211 |
+
"average_confidence": 0
|
212 |
+
}
|
213 |
+
|
214 |
+
# Sentiment counts
|
215 |
+
cursor.execute("SELECT sentiment, COUNT(*) FROM predictions GROUP BY sentiment")
|
216 |
+
sentiment_counts = dict(cursor.fetchall())
|
217 |
+
|
218 |
+
# Average confidence
|
219 |
+
cursor.execute("SELECT AVG(confidence) FROM predictions")
|
220 |
+
avg_confidence = cursor.fetchone()[0]
|
221 |
+
|
222 |
+
return {
|
223 |
+
"total_predictions": total_count,
|
224 |
+
"positive_count": sentiment_counts.get("Positive", 0),
|
225 |
+
"negative_count": sentiment_counts.get("Negative", 0),
|
226 |
+
"average_confidence": round(avg_confidence, 4) if avg_confidence else 0
|
227 |
+
}
|
228 |
+
|
229 |
+
except Exception as e:
|
230 |
+
logger.error(f"Error getting stats: {str(e)}")
|
231 |
+
return {}
|
232 |
+
|
233 |
+
# Global logger instance
|
234 |
+
_logger_instance = None
|
235 |
+
|
236 |
+
def get_logger():
|
237 |
+
"""Get the global logger instance"""
|
238 |
+
global _logger_instance
|
239 |
+
if _logger_instance is None:
|
240 |
+
_logger_instance = PredictionLogger()
|
241 |
+
return _logger_instance
|
242 |
+
|
243 |
+
def log_prediction(text: str, sentiment: str, confidence: float, metadata: Dict = None):
|
244 |
+
"""Convenience function to log a prediction"""
|
245 |
+
logger_instance = get_logger()
|
246 |
+
logger_instance.log_prediction(text, sentiment, confidence, metadata=metadata)
|
247 |
+
|
248 |
+
def get_all_predictions(limit: int = None) -> List[Dict]:
|
249 |
+
"""Convenience function to get all predictions"""
|
250 |
+
logger_instance = get_logger()
|
251 |
+
return logger_instance.get_all_predictions(limit=limit)
|
252 |
+
|
253 |
+
def get_predictions_by_sentiment(sentiment: str) -> List[Dict]:
|
254 |
+
"""Convenience function to get predictions by sentiment"""
|
255 |
+
logger_instance = get_logger()
|
256 |
+
return logger_instance.get_predictions_by_sentiment(sentiment)
|
257 |
+
|
258 |
+
def get_prediction_stats() -> Dict:
|
259 |
+
"""Convenience function to get prediction statistics"""
|
260 |
+
logger_instance = get_logger()
|
261 |
+
return logger_instance.get_stats()
|
262 |
+
|
263 |
+
if __name__ == "__main__":
|
264 |
+
# Test the logging system
|
265 |
+
logger_instance = PredictionLogger()
|
266 |
+
|
267 |
+
# Test logging
|
268 |
+
test_predictions = [
|
269 |
+
("This product is amazing!", "Positive", 0.95),
|
270 |
+
("Terrible quality, waste of money", "Negative", 0.89),
|
271 |
+
("It's okay, nothing special", "Positive", 0.67),
|
272 |
+
("Awful customer service", "Negative", 0.92)
|
273 |
+
]
|
274 |
+
|
275 |
+
print("Testing prediction logging...")
|
276 |
+
for text, sentiment, confidence in test_predictions:
|
277 |
+
logger_instance.log_prediction(text, sentiment, confidence)
|
278 |
+
print(f"Logged: {sentiment} - {text}")
|
279 |
+
|
280 |
+
# Test retrieval
|
281 |
+
print("\nRetrieving all predictions:")
|
282 |
+
predictions = logger_instance.get_all_predictions()
|
283 |
+
for pred in predictions:
|
284 |
+
print(f"ID: {pred['id']}, Sentiment: {pred['sentiment']}, Text: {pred['text'][:50]}...")
|
285 |
+
|
286 |
+
# Test stats
|
287 |
+
print("\nPrediction statistics:")
|
288 |
+
stats = logger_instance.get_stats()
|
289 |
+
print(json.dumps(stats, indent=2))
|