|
import torch
|
|
import torch.nn as nn
|
|
import torchvision.transforms as transforms
|
|
from PIL import Image
|
|
import gradio as gr
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
model = torch.hub.load('pytorch/vision:v0.10.0', 'inception_v3', pretrained=True)
|
|
n_classes = 10
|
|
model.fc = nn.Linear(model.fc.in_features, n_classes)
|
|
model = model.to(device)
|
|
|
|
model.load_state_dict(torch.load("NumtaDB_Classifier_Model.pth", map_location=device))
|
|
model.eval()
|
|
|
|
transform = transforms.Compose([
|
|
transforms.Resize((299, 299)),
|
|
transforms.Grayscale(num_output_channels=3),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
])
|
|
|
|
label_name = ["Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Nine", "Ten"]
|
|
|
|
def predict(image):
|
|
if not isinstance(image, Image.Image):
|
|
image = Image.fromarray(image)
|
|
|
|
image_tensor = transform(image).unsqueeze(0).to(device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(image_tensor)
|
|
probs = torch.softmax(outputs, dim=1)
|
|
|
|
predictions = {label_name[i]: float(probs[0][i]) for i in range(len(label_name))}
|
|
|
|
return predictions
|
|
|
|
iface = gr.Interface(
|
|
fn=predict,
|
|
inputs=gr.Image(label="Upload Image"),
|
|
outputs=gr.Label(num_top_classes=len(label_name)),
|
|
title="BanglaDigitPro: Advanced Bengali Numeral Recognition",
|
|
description="Upload an image of a handwritten Bangla digit to classify it.",
|
|
examples=[["example_1.png"], ["example_2.png"], ["example_3.png"], ["example_4.png"], ["example_5.png"]]
|
|
)
|
|
|
|
iface.launch(share=True)
|
|
|