Upload 7 files
Browse files- NumtaDB_Classifier_Model.pth +3 -0
- app.py +49 -0
- example_1.png +0 -0
- example_2.png +0 -0
- example_3.png +0 -0
- example_4.png +0 -0
- example_5.png +0 -0
NumtaDB_Classifier_Model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b852997d2ee8b27c9adf8940c9d10bf9155997cbfedc1cfc31ddafe82c7e04e
|
3 |
+
size 100886642
|
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
from PIL import Image
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
|
9 |
+
model = torch.hub.load('pytorch/vision:v0.10.0', 'inception_v3', pretrained=True)
|
10 |
+
n_classes = 10
|
11 |
+
model.fc = nn.Linear(model.fc.in_features, n_classes)
|
12 |
+
model = model.to(device)
|
13 |
+
|
14 |
+
model.load_state_dict(torch.load("NumtaDB_Classifier_Model.pth", map_location=device))
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
transform = transforms.Compose([
|
18 |
+
transforms.Resize((299, 299)),
|
19 |
+
transforms.Grayscale(num_output_channels=3),
|
20 |
+
transforms.ToTensor(),
|
21 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
22 |
+
])
|
23 |
+
|
24 |
+
label_name = ["Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Nine", "Ten"]
|
25 |
+
|
26 |
+
def predict(image):
|
27 |
+
if not isinstance(image, Image.Image):
|
28 |
+
image = Image.fromarray(image)
|
29 |
+
|
30 |
+
image_tensor = transform(image).unsqueeze(0).to(device)
|
31 |
+
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = model(image_tensor)
|
34 |
+
probs = torch.softmax(outputs, dim=1)
|
35 |
+
|
36 |
+
predictions = {label_name[i]: float(probs[0][i]) for i in range(len(label_name))}
|
37 |
+
|
38 |
+
return predictions
|
39 |
+
|
40 |
+
iface = gr.Interface(
|
41 |
+
fn=predict,
|
42 |
+
inputs=gr.Image(label="Upload Image"),
|
43 |
+
outputs=gr.Label(num_top_classes=len(label_name)),
|
44 |
+
title="BanglaDigitPro: Advanced Bengali Numeral Recognition",
|
45 |
+
description="Upload an image of a handwritten Bangla digit to classify it.",
|
46 |
+
examples=[["example_1.png"], ["example_2.png"], ["example_3.png"], ["example_4.png"], ["example_5.png"]]
|
47 |
+
)
|
48 |
+
|
49 |
+
iface.launch(share=True)
|
example_1.png
ADDED
![]() |
example_2.png
ADDED
![]() |
example_3.png
ADDED
![]() |
example_4.png
ADDED
![]() |
example_5.png
ADDED
![]() |