jaothan commited on
Commit
92ba7fd
Β·
verified Β·
1 Parent(s): 0f2dc21

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -7
app.py CHANGED
@@ -109,14 +109,72 @@ def build_leaderboard_tab(leaderboard_table_file1, leaderboard_table_file2, show
109
  wrap=True,
110
  )
111
 
112
- # Display additional Markdown notes as needed...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
  with gr.Tab("πŸ… Benchmark 2", id=1):
115
  arena_table_vals = get_arena_table(model_table_df2)
116
  md = make_arena_leaderboard_md(len(arena_table_vals))
117
  gr.Markdown(md, elem_id="leaderboard_markdown")
118
-
119
- # Remove height argument
120
  gr.Dataframe(
121
  headers=[
122
  "Model",
@@ -136,13 +194,19 @@ def build_leaderboard_tab(leaderboard_table_file1, leaderboard_table_file2, show
136
  ],
137
  value=arena_table_vals,
138
  elem_id="arena_leaderboard_dataframe",
 
139
  column_widths=[200, 150, 150, 130, 100, 140],
140
  wrap=True,
141
- )
 
 
 
 
 
 
142
  else:
143
- pass
144
-
145
- return [md_1, plot_1, plot_2]
146
 
147
  block_css = """
148
  #notice_markdown {
 
109
  wrap=True,
110
  )
111
 
112
+ # Displaying a note about the leaderboard analysis
113
+ gr.Markdown(
114
+ f"""Note: Upon reviewing the leaderboard, it's evident that two models, Gemini and OpenHermes, outperform the others. Our next step involves a detailed analysis and comparison of the results obtained by these two models.""",
115
+ elem_id="leaderboard_markdown"
116
+ )
117
+
118
+ # Displaying additional statistics for Gemini and OpenHermes
119
+ gr.Markdown(
120
+ f"""## More Statistics for Gemini and OpenHermes\n
121
+ Now we will focus on Gemini and OpenHermes, diving deeper into their performance for a comprehensive comparison.""",
122
+ elem_id=0
123
+ )
124
+
125
+ # Displaying the confusion matrices for Gemini and OpenHermes
126
+ with gr.Row():
127
+ with gr.Column():
128
+ gr.Markdown(
129
+ "#### Figure 1: Gemini Confusion Matrix"
130
+ )
131
+ plot_1 = gr.Image("./Benchmark1/gemini_cm.png", show_label=False)
132
+ # Detailed analysis of Gemini's performance
133
+ gr.Markdown(
134
+ """### True Positives:
135
+ Our model correctly identified all 18 pages lacking the desired information (Payment product, FeeTier, and Rate).
136
+
137
+ ### True Negatives:
138
+ The model successfully predicted desired information on 39 out of 41 pages with an accuracy ranging from 12% to 100%. (For more details about accuracy, check the Notebook [here](https://huggingface.co/spaces/Effyis/LLms-Benchmark/blob/main/Benchmark1/gemini.ipynb))
139
+
140
+ ### False Negatives:
141
+ In 2 instances, the model incorrectly predicted that pages lacked the desired information when they actually contained it.
142
+
143
+ ### False Positives:
144
+ The model incorrectly predicted that 0 pages contained the desired information when they were actually missing it."""
145
+ )
146
+
147
+ with gr.Column():
148
+ gr.Markdown(
149
+ "#### Figure 2: OpenHermes Confusion Matrix"
150
+ )
151
+ plot_2 = gr.Image("./Benchmark1/openhermes_cm.png", show_label=False)
152
+ # Detailed analysis of OpenHermes's performance
153
+ gr.Markdown(
154
+ """### True Positives:
155
+ Our model correctly identified 12 out of 18 pages lacking the desired information (Payment product, FeeTier, and Rate).
156
+
157
+ ### True Negatives:
158
+ The model successfully predicted desired information on 21 out of 41 pages with an accuracy ranging from 5% to 66%. (For more details about accuracy, check the Notebook [here](https://huggingface.co/spaces/Effyis/LLms-Benchmark/blob/main/Benchmark1/openhermes.ipynb))
159
 
160
+ ### False Negatives:
161
+ In 20 instances, the model incorrectly predicted that pages lacked the desired information when they actually contained it.
162
+
163
+ ### False Positives:
164
+ The model incorrectly predicted that 6 pages contained the desired information when they were actually missing it."""
165
+ )
166
+
167
+ # Conclusion based on the analysis
168
+ gr.Markdown(
169
+ """## Conclusion\n
170
+ Upon analyzing the performance of Gemini and OpenHermes, it becomes evident that both models exhibit strengths and weaknesses. Gemini demonstrates higher accuracy in identifying pages lacking desired information and also performs better in predicting pages containing the desired information. On the other hand, while OpenHermes shows good results in identifying pages lacking desired information, it achieves only 50% accuracy in predicting pages containing the desired information. Further fine-tuning of both models could lead to enhanced overall performance."""
171
+ )
172
+
173
+
174
  with gr.Tab("πŸ… Benchmark 2", id=1):
175
  arena_table_vals = get_arena_table(model_table_df2)
176
  md = make_arena_leaderboard_md(len(arena_table_vals))
177
  gr.Markdown(md, elem_id="leaderboard_markdown")
 
 
178
  gr.Dataframe(
179
  headers=[
180
  "Model",
 
194
  ],
195
  value=arena_table_vals,
196
  elem_id="arena_leaderboard_dataframe",
197
+ height=700,
198
  column_widths=[200, 150, 150, 130, 100, 140],
199
  wrap=True,
200
+ )
201
+ # gr.Markdown(
202
+ # f"""
203
+ # Note: For this benchmark, only a sample of 100 points from the dataset is utilized. It's evident that the data context is straightforward, yet it includes Arabic names. This could explain the lower performance scores of the models, as they may lack robust capabilities in handling Arabic names.""",
204
+ # elem_id="leaderboard_markdown"
205
+ # )
206
+
207
  else:
208
+ pass
209
+ return [md_1,plot_1, plot_2]
 
210
 
211
  block_css = """
212
  #notice_markdown {