Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import argparse
|
5 |
+
|
6 |
+
def make_default_md():
|
7 |
+
leaderboard_md = f"""
|
8 |
+
# π LLms Benchmark
|
9 |
+
|
10 |
+
The main goal of this project is to utilize Large Language Models (LLMs) to extract specific information from PDF documents and organize it into a structured JSON format.
|
11 |
+
|
12 |
+
To achieve this objective, we are assessing various LLMs on two benchmarks:
|
13 |
+
|
14 |
+
1. [Benchmark1](https://huggingface.co/spaces/Nechba/LLms-Benchmark/blob/main/dataset.jsonl):
|
15 |
+
This benchmark consists of a dataset of 59 pages as context and corresponding JSON extracts from "Interchange and Service Fees Manual: Europe Region".
|
16 |
+
|
17 |
+
2. [Benchmark2](https://huggingface.co/datasets/Effyis/Table-Extraction):
|
18 |
+
This benchmark comprises a dataset of 16573 tables as context and corresponding JSON extracts.
|
19 |
+
"""
|
20 |
+
return leaderboard_md
|
21 |
+
|
22 |
+
|
23 |
+
def make_arena_leaderboard_md(total_models):
|
24 |
+
leaderboard_md = f"""
|
25 |
+
Total #models: **{total_models}**. Last updated: Juin 01, 2024.
|
26 |
+
|
27 |
+
"""
|
28 |
+
return leaderboard_md
|
29 |
+
|
30 |
+
def model_hyperlink(model_name, link):
|
31 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
32 |
+
|
33 |
+
def load_leaderboard_table_csv(filename, add_hyperlink=True):
|
34 |
+
rows = []
|
35 |
+
with open(filename, 'r') as file:
|
36 |
+
lines = file.readlines()
|
37 |
+
heads = [v.strip() for v in lines[0].split(",")]
|
38 |
+
for line in lines[1:]:
|
39 |
+
row = [v.strip() for v in line.split(",")]
|
40 |
+
item = {}
|
41 |
+
for h, v in zip(heads, row):
|
42 |
+
item[h] = v
|
43 |
+
if add_hyperlink:
|
44 |
+
item["Model"] = model_hyperlink(item["Model"], item["Link"])
|
45 |
+
item["Notebook link"] = model_hyperlink("Notebook", item["Notebook link"])
|
46 |
+
rows.append(item)
|
47 |
+
return rows
|
48 |
+
|
49 |
+
def get_arena_table(model_table_df):
|
50 |
+
# change type Percentage of values column of df
|
51 |
+
model_table_df["Percentage of values"] = model_table_df["Percentage of values"].astype(float)
|
52 |
+
model_table_df["Percentage of keys"] = model_table_df["Percentage of keys"].astype(float)
|
53 |
+
model_table_df["Average time (s)"] = model_table_df["Average time (s)"].astype(float)
|
54 |
+
arena_df = model_table_df.sort_values(by=["Percentage of values"], ascending=False)
|
55 |
+
values = []
|
56 |
+
if not arena_df.empty: # Check if arena_df is not empty
|
57 |
+
for i in range(len(arena_df)):
|
58 |
+
row = []
|
59 |
+
model_name = arena_df["Model"].values[i] # Access model name directly without index 0
|
60 |
+
row.append(model_name)
|
61 |
+
row.append(arena_df.iloc[i]["Percentage of values"])
|
62 |
+
row.append(arena_df.iloc[i]["Percentage of keys"])
|
63 |
+
row.append(arena_df.iloc[i]["Average time (s)"])
|
64 |
+
row.append(arena_df.iloc[i]["Notebook link"])
|
65 |
+
row.append(arena_df.iloc[i]["License"])
|
66 |
+
# row.append(arena_df.iloc[i]["Link"])
|
67 |
+
values.append(row)
|
68 |
+
return values
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
def build_leaderboard_tab(leaderboard_table_file1, leaderboard_table_file2, show_plot=False):
|
73 |
+
default_md = make_default_md()
|
74 |
+
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
|
75 |
+
|
76 |
+
if leaderboard_table_file1:
|
77 |
+
data1 = load_leaderboard_table_csv(leaderboard_table_file1)
|
78 |
+
model_table_df1 = pd.DataFrame(data1)
|
79 |
+
data2 = load_leaderboard_table_csv(leaderboard_table_file2)
|
80 |
+
model_table_df2 = pd.DataFrame(data2)
|
81 |
+
|
82 |
+
with gr.Tabs() as tabs:
|
83 |
+
with gr.Tab(" π
Benchmark 1", id=0):
|
84 |
+
arena_table_vals = get_arena_table(model_table_df1)
|
85 |
+
md = make_arena_leaderboard_md(len(arena_table_vals))
|
86 |
+
gr.Markdown(md, elem_id="leaderboard_markdown")
|
87 |
+
|
88 |
+
# Remove height argument
|
89 |
+
gr.Dataframe(
|
90 |
+
headers=[
|
91 |
+
"Model",
|
92 |
+
"Percentage of values (%)",
|
93 |
+
"Percentage of keys (%)",
|
94 |
+
"Average time (s)",
|
95 |
+
"Code",
|
96 |
+
"License",
|
97 |
+
],
|
98 |
+
datatype=[
|
99 |
+
"markdown",
|
100 |
+
"number",
|
101 |
+
"number",
|
102 |
+
"number",
|
103 |
+
"markdown",
|
104 |
+
"str"
|
105 |
+
],
|
106 |
+
value=arena_table_vals,
|
107 |
+
elem_id="arena_leaderboard_dataframe",
|
108 |
+
column_widths=[200, 150, 150, 130, 100, 140],
|
109 |
+
wrap=True,
|
110 |
+
)
|
111 |
+
|
112 |
+
# Display additional Markdown notes as needed...
|
113 |
+
|
114 |
+
with gr.Tab("π
Benchmark 2", id=1):
|
115 |
+
arena_table_vals = get_arena_table(model_table_df2)
|
116 |
+
md = make_arena_leaderboard_md(len(arena_table_vals))
|
117 |
+
gr.Markdown(md, elem_id="leaderboard_markdown")
|
118 |
+
|
119 |
+
# Remove height argument
|
120 |
+
gr.Dataframe(
|
121 |
+
headers=[
|
122 |
+
"Model",
|
123 |
+
"Percentage of values (%)",
|
124 |
+
"Percentage of keys (%)",
|
125 |
+
"Average time (s)",
|
126 |
+
"Code",
|
127 |
+
"License",
|
128 |
+
],
|
129 |
+
datatype=[
|
130 |
+
"markdown",
|
131 |
+
"number",
|
132 |
+
"number",
|
133 |
+
"number",
|
134 |
+
"markdown",
|
135 |
+
"str"
|
136 |
+
],
|
137 |
+
value=arena_table_vals,
|
138 |
+
elem_id="arena_leaderboard_dataframe",
|
139 |
+
column_widths=[200, 150, 150, 130, 100, 140],
|
140 |
+
wrap=True,
|
141 |
+
)
|
142 |
+
else:
|
143 |
+
pass
|
144 |
+
|
145 |
+
return [md_1, plot_1, plot_2]
|
146 |
+
|
147 |
+
block_css = """
|
148 |
+
#notice_markdown {
|
149 |
+
font-size: 104%
|
150 |
+
}
|
151 |
+
#notice_markdown th {
|
152 |
+
display: none;
|
153 |
+
}
|
154 |
+
#notice_markdown td {
|
155 |
+
padding-top: 6px;
|
156 |
+
padding-bottom: 6px;
|
157 |
+
}
|
158 |
+
#leaderboard_markdown {
|
159 |
+
font-size: 104%
|
160 |
+
}
|
161 |
+
#leaderboard_markdown td {
|
162 |
+
padding-top: 6px;
|
163 |
+
padding-bottom: 6px;
|
164 |
+
}
|
165 |
+
#leaderboard_dataframe td {
|
166 |
+
line-height: 0.1em;
|
167 |
+
}
|
168 |
+
footer {
|
169 |
+
display:none !important
|
170 |
+
}
|
171 |
+
.sponsor-image-about img {
|
172 |
+
margin: 0 20px;
|
173 |
+
margin-top: 20px;
|
174 |
+
height: 40px;
|
175 |
+
max-height: 100%;
|
176 |
+
width: auto;
|
177 |
+
float: left;
|
178 |
+
}
|
179 |
+
"""
|
180 |
+
|
181 |
+
def build_demo(leaderboard_table_file1, leaderboard_table_file2):
|
182 |
+
text_size = gr.themes.sizes.text_lg
|
183 |
+
with gr.Blocks(
|
184 |
+
title="LLMS Benchmark",
|
185 |
+
theme=gr.themes.Base(text_size=text_size),
|
186 |
+
css=block_css,
|
187 |
+
) as demo:
|
188 |
+
leader_components = build_leaderboard_tab(
|
189 |
+
leaderboard_table_file1,leaderboard_table_file2, show_plot=True
|
190 |
+
)
|
191 |
+
return demo
|
192 |
+
|
193 |
+
if __name__ == "__main__":
|
194 |
+
parser = argparse.ArgumentParser()
|
195 |
+
parser.add_argument("--share", action="store_true")
|
196 |
+
args = parser.parse_args()
|
197 |
+
|
198 |
+
leaderboard_table_file1 = "./Benchmark1/leaderboard.csv"
|
199 |
+
leaderboard_table_file2 = "./Benchmark2/leaderboard.csv"
|
200 |
+
demo = build_demo(leaderboard_table_file1,leaderboard_table_file2)
|
201 |
+
demo.launch(share=args.share)
|