File size: 7,203 Bytes
0f2dc21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import gradio as gr
import numpy as np
import pandas as pd
import argparse

def make_default_md():
    leaderboard_md = f"""
    # πŸ† LLms Benchmark
    
    The main goal of this project is to utilize Large Language Models (LLMs) to extract specific information from PDF documents and organize it into a structured JSON format.
    
    To achieve this objective, we are assessing various LLMs on two benchmarks:
    
    1. [Benchmark1](https://huggingface.co/spaces/Nechba/LLms-Benchmark/blob/main/dataset.jsonl): 
    This benchmark consists of a dataset of 59 pages as context and corresponding JSON extracts from "Interchange and Service Fees Manual: Europe Region".
    
    2. [Benchmark2](https://huggingface.co/datasets/Effyis/Table-Extraction): 
    This benchmark comprises a dataset of 16573 tables as context and corresponding JSON extracts.
    """
    return leaderboard_md


def make_arena_leaderboard_md(total_models):
    leaderboard_md = f"""
Total #models: **{total_models}**. Last updated: Juin 01, 2024.

"""
    return leaderboard_md

def model_hyperlink(model_name, link):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'

def load_leaderboard_table_csv(filename, add_hyperlink=True):
    rows = []
    with open(filename, 'r') as file:
        lines = file.readlines()
        heads = [v.strip() for v in lines[0].split(",")]
        for line in lines[1:]:
            row = [v.strip() for v in line.split(",")]
            item = {}
            for h, v in zip(heads, row):
                item[h] = v
            if add_hyperlink:
                item["Model"] = model_hyperlink(item["Model"], item["Link"])
                item["Notebook link"] = model_hyperlink("Notebook", item["Notebook link"])
            rows.append(item)
    return rows

def get_arena_table(model_table_df):
    # change type Percentage of values column of df
    model_table_df["Percentage of values"] = model_table_df["Percentage of values"].astype(float)
    model_table_df["Percentage of keys"] = model_table_df["Percentage of keys"].astype(float)
    model_table_df["Average time (s)"] = model_table_df["Average time (s)"].astype(float)
    arena_df = model_table_df.sort_values(by=["Percentage of values"], ascending=False)
    values = []
    if not arena_df.empty:  # Check if arena_df is not empty
        for i in range(len(arena_df)):
            row = []
            model_name = arena_df["Model"].values[i]  # Access model name directly without index 0
            row.append(model_name)
            row.append(arena_df.iloc[i]["Percentage of values"])
            row.append(arena_df.iloc[i]["Percentage of keys"])
            row.append(arena_df.iloc[i]["Average time (s)"])
            row.append(arena_df.iloc[i]["Notebook link"])
            row.append(arena_df.iloc[i]["License"])
            # row.append(arena_df.iloc[i]["Link"])
            values.append(row)
    return values



def build_leaderboard_tab(leaderboard_table_file1, leaderboard_table_file2, show_plot=False):
    default_md = make_default_md()
    md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
    
    if leaderboard_table_file1:
        data1 = load_leaderboard_table_csv(leaderboard_table_file1)
        model_table_df1 = pd.DataFrame(data1)
        data2 = load_leaderboard_table_csv(leaderboard_table_file2)
        model_table_df2 = pd.DataFrame(data2)
        
        with gr.Tabs() as tabs:
            with gr.Tab(" πŸ… Benchmark 1", id=0):
                arena_table_vals = get_arena_table(model_table_df1)
                md = make_arena_leaderboard_md(len(arena_table_vals))
                gr.Markdown(md, elem_id="leaderboard_markdown")
                
                # Remove height argument
                gr.Dataframe(
                    headers=[
                        "Model",
                        "Percentage of values (%)",
                        "Percentage of keys (%)",
                        "Average time (s)",
                        "Code",
                        "License",
                    ],
                    datatype=[
                        "markdown",
                        "number",
                        "number",
                        "number",
                        "markdown",
                        "str"
                    ],
                    value=arena_table_vals,
                    elem_id="arena_leaderboard_dataframe",
                    column_widths=[200, 150, 150, 130, 100, 140],
                    wrap=True,
                )

                # Display additional Markdown notes as needed...
                
            with gr.Tab("πŸ… Benchmark 2", id=1):
                arena_table_vals = get_arena_table(model_table_df2)
                md = make_arena_leaderboard_md(len(arena_table_vals))
                gr.Markdown(md, elem_id="leaderboard_markdown")

                # Remove height argument
                gr.Dataframe(
                    headers=[
                        "Model",
                        "Percentage of values (%)",
                        "Percentage of keys (%)",
                        "Average time (s)",
                        "Code",
                        "License",
                    ],
                    datatype=[
                        "markdown",
                        "number",
                        "number",
                        "number",
                        "markdown",
                        "str"
                    ],
                    value=arena_table_vals,
                    elem_id="arena_leaderboard_dataframe",
                    column_widths=[200, 150, 150, 130, 100, 140],
                    wrap=True,
                )
    else:
        pass
    
    return [md_1, plot_1, plot_2]

block_css = """
#notice_markdown {
    font-size: 104%
}
#notice_markdown th {
    display: none;
}
#notice_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}
#leaderboard_markdown {
    font-size: 104%
}
#leaderboard_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}
#leaderboard_dataframe td {
    line-height: 0.1em;
}
footer {
    display:none !important
}
.sponsor-image-about img {
    margin: 0 20px;
    margin-top: 20px;
    height: 40px;
    max-height: 100%;
    width: auto;
    float: left;
}
"""

def build_demo(leaderboard_table_file1, leaderboard_table_file2):
    text_size = gr.themes.sizes.text_lg
    with gr.Blocks(
        title="LLMS Benchmark",
        theme=gr.themes.Base(text_size=text_size),
        css=block_css,
    ) as demo:
        leader_components = build_leaderboard_tab(
            leaderboard_table_file1,leaderboard_table_file2, show_plot=True
        )
    return demo

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true")
    args = parser.parse_args()

    leaderboard_table_file1 = "./Benchmark1/leaderboard.csv"
    leaderboard_table_file2 = "./Benchmark2/leaderboard.csv"
    demo = build_demo(leaderboard_table_file1,leaderboard_table_file2)
    demo.launch(share=args.share)