rawalkhirodkar's picture
Add initial commit
28c256d
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os
from mmengine import MMLogger
from mmengine.config import Config, DictAction
from mmengine.dist import init_dist
from mmengine.registry import init_default_scope
from mmengine.utils import mkdir_or_exist
from mmdet.utils.benchmark import (DataLoaderBenchmark, DatasetBenchmark,
InferenceBenchmark)
def parse_args():
parser = argparse.ArgumentParser(description='MMDet benchmark')
parser.add_argument('config', help='test config file path')
parser.add_argument('--checkpoint', help='checkpoint file')
parser.add_argument(
'--task',
choices=['inference', 'dataloader', 'dataset'],
default='dataloader',
help='Which task do you want to go to benchmark')
parser.add_argument(
'--repeat-num',
type=int,
default=1,
help='number of repeat times of measurement for averaging the results')
parser.add_argument(
'--max-iter', type=int, default=2000, help='num of max iter')
parser.add_argument(
'--log-interval', type=int, default=50, help='interval of logging')
parser.add_argument(
'--num-warmup', type=int, default=5, help='Number of warmup')
parser.add_argument(
'--fuse-conv-bn',
action='store_true',
help='Whether to fuse conv and bn, this will slightly increase'
'the inference speed')
parser.add_argument(
'--dataset-type',
choices=['train', 'val', 'test'],
default='test',
help='Benchmark dataset type. only supports train, val and test')
parser.add_argument(
'--work-dir',
help='the directory to save the file containing '
'benchmark metrics')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def inference_benchmark(args, cfg, distributed, logger):
benchmark = InferenceBenchmark(
cfg,
args.checkpoint,
distributed,
args.fuse_conv_bn,
args.max_iter,
args.log_interval,
args.num_warmup,
logger=logger)
return benchmark
def dataloader_benchmark(args, cfg, distributed, logger):
benchmark = DataLoaderBenchmark(
cfg,
distributed,
args.dataset_type,
args.max_iter,
args.log_interval,
args.num_warmup,
logger=logger)
return benchmark
def dataset_benchmark(args, cfg, distributed, logger):
benchmark = DatasetBenchmark(
cfg,
args.dataset_type,
args.max_iter,
args.log_interval,
args.num_warmup,
logger=logger)
return benchmark
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
init_default_scope(cfg.get('default_scope', 'mmdet'))
distributed = False
if args.launcher != 'none':
init_dist(args.launcher, **cfg.get('env_cfg', {}).get('dist_cfg', {}))
distributed = True
log_file = None
if args.work_dir:
log_file = os.path.join(args.work_dir, 'benchmark.log')
mkdir_or_exist(args.work_dir)
logger = MMLogger.get_instance(
'mmdet', log_file=log_file, log_level='INFO')
benchmark = eval(f'{args.task}_benchmark')(args, cfg, distributed, logger)
benchmark.run(args.repeat_num)
if __name__ == '__main__':
main()