File size: 4,393 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import os

from mmengine import MMLogger
from mmengine.config import Config, DictAction
from mmengine.dist import init_dist
from mmengine.registry import init_default_scope
from mmengine.utils import mkdir_or_exist

from mmdet.utils.benchmark import (DataLoaderBenchmark, DatasetBenchmark,
                                   InferenceBenchmark)


def parse_args():
    parser = argparse.ArgumentParser(description='MMDet benchmark')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('--checkpoint', help='checkpoint file')
    parser.add_argument(
        '--task',
        choices=['inference', 'dataloader', 'dataset'],
        default='dataloader',
        help='Which task do you want to go to benchmark')
    parser.add_argument(
        '--repeat-num',
        type=int,
        default=1,
        help='number of repeat times of measurement for averaging the results')
    parser.add_argument(
        '--max-iter', type=int, default=2000, help='num of max iter')
    parser.add_argument(
        '--log-interval', type=int, default=50, help='interval of logging')
    parser.add_argument(
        '--num-warmup', type=int, default=5, help='Number of warmup')
    parser.add_argument(
        '--fuse-conv-bn',
        action='store_true',
        help='Whether to fuse conv and bn, this will slightly increase'
        'the inference speed')
    parser.add_argument(
        '--dataset-type',
        choices=['train', 'val', 'test'],
        default='test',
        help='Benchmark dataset type. only supports train, val and test')
    parser.add_argument(
        '--work-dir',
        help='the directory to save the file containing '
        'benchmark metrics')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)
    return args


def inference_benchmark(args, cfg, distributed, logger):
    benchmark = InferenceBenchmark(
        cfg,
        args.checkpoint,
        distributed,
        args.fuse_conv_bn,
        args.max_iter,
        args.log_interval,
        args.num_warmup,
        logger=logger)
    return benchmark


def dataloader_benchmark(args, cfg, distributed, logger):
    benchmark = DataLoaderBenchmark(
        cfg,
        distributed,
        args.dataset_type,
        args.max_iter,
        args.log_interval,
        args.num_warmup,
        logger=logger)
    return benchmark


def dataset_benchmark(args, cfg, distributed, logger):
    benchmark = DatasetBenchmark(
        cfg,
        args.dataset_type,
        args.max_iter,
        args.log_interval,
        args.num_warmup,
        logger=logger)
    return benchmark


def main():
    args = parse_args()
    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    init_default_scope(cfg.get('default_scope', 'mmdet'))

    distributed = False
    if args.launcher != 'none':
        init_dist(args.launcher, **cfg.get('env_cfg', {}).get('dist_cfg', {}))
        distributed = True

    log_file = None
    if args.work_dir:
        log_file = os.path.join(args.work_dir, 'benchmark.log')
        mkdir_or_exist(args.work_dir)

    logger = MMLogger.get_instance(
        'mmdet', log_file=log_file, log_level='INFO')

    benchmark = eval(f'{args.task}_benchmark')(args, cfg, distributed, logger)
    benchmark.run(args.repeat_num)


if __name__ == '__main__':
    main()