Spaces:
Build error
Build error
A newer version of the Gradio SDK is available:
5.24.0
Code Structure of CUDA operators
This folder contains all non-python code for MMCV custom ops. Please follow the same architecture if you want to add new ops.
Directories Tree
.
├── common
│ ├── box_iou_rotated_utils.hpp
│ ├── parrots_cpp_helper.hpp
│ ├── parrots_cuda_helper.hpp
│ ├── pytorch_cpp_helper.hpp
│ ├── pytorch_cuda_helper.hpp
│ ├── pytorch_device_registry.hpp
│ ├── cuda
│ │ ├── common_cuda_helper.hpp
│ │ ├── parrots_cudawarpfunction.cuh
│ │ ├── ...
│ │ └── ops_cuda_kernel.cuh
| ├── mps
│ │ ├── MPSLibrary.h
│ │ ├── ...
│ │ └── MPSUtils.h
| ├── mlu
│ │ └── ...
| └── utils
│ │ └── ...
├── parrots
│ ├── ...
│ ├── ops.cpp
│ ├── ops_parrots.cpp
│ └── ops_pytorch.h
└── pytorch
├── info.cpp
├── pybind.cpp
├── ...
├── ops.cpp
├── cuda
│ ├── ...
│ └── ops_cuda.cu
├── cpu
│ ├── ...
│ └── ops.cpp
├── mps
│ ├── ...
| └── op_mps.mm
└── mlu
├── ...
└── op_mlu.cpp
Components
common
: This directory contains all tools and shared codes.cuda
: The cuda kernels which can be shared by all backends. HIP kernel is also here since they have similar syntax.mps
: The tools used to support MPS ops. NOTE that MPS support is experimental.mlu
: The MLU kernels used to support Cambricon device.utils
: The kernels and utils of spconv.
parrots
: Parrots is a deep learning frame for model training and inference. Parrots custom ops are placed in this directory.pytorch
: PyTorch custom ops are supported by binding C++ to Python with pybind11. The ops implementation and binding codes are placed in this directory.cuda
: This directory contains cuda kernel launchers, which feed memory pointers of tensor to the cuda kernel incommon/cuda
. The launchers provide c++ interface of cuda implementation of corresponding custom ops.cpu
: This directory contain cpu implementations of corresponding custom ops.mlu
: This directory contain launchers of each MLU kernels.mps
: MPS ops implementation and launchers.
How to add new PyTorch ops?
(Optional) Add shared kernel in
common
to support special hardware platform.// src/common/cuda/new_ops_cuda_kernel.cuh template <typename T> __global__ void new_ops_forward_cuda_kernel(const T* input, T* output, ...) { // forward here }
Add cuda kernel launcher in
pytorch/cuda
.// src/pytorch/cuda #include <new_ops_cuda_kernel.cuh> void NewOpsForwardCUDAKernelLauncher(Tensor input, Tensor output, ...){ // initialize at::cuda::CUDAGuard device_guard(input.device()); cudaStream_t stream = at::cuda::getCurrentCUDAStream(); ... AT_DISPATCH_FLOATING_TYPES_AND_HALF( input.scalar_type(), "new_ops_forward_cuda_kernel", ([&] { new_ops_forward_cuda_kernel<scalar_t> <<<GET_BLOCKS(output_size), THREADS_PER_BLOCK, 0, stream>>>( input.data_ptr<scalar_t>(), output.data_ptr<scalar_t>(),...); })); AT_CUDA_CHECK(cudaGetLastError()); }
Register implementation for different devices.
// src/pytorch/cuda/cudabind.cpp ... Tensor new_ops_forward_cuda(Tensor input, Tensor output, ...){ // implement cuda forward here // use `NewOpsForwardCUDAKernelLauncher` here } // declare interface here. Tensor new_ops_forward_impl(Tensor input, Tensor output, ...); // register the implementation for given device (CUDA here). REGISTER_DEVICE_IMPL(new_ops_forward_impl, CUDA, new_ops_forward_cuda);
Add ops implementation in
pytorch
directory. Select different implementations according to device type.// src/pytorch/new_ops.cpp Tensor new_ops_forward_impl(Tensor input, Tensor output, ...){ // dispatch the implementation according to the device type of input. DISPATCH_DEVICE_IMPL(new_ops_forward_impl, input, output, ...); } ... Tensor new_ops_forward(Tensor input, Tensor output, ...){ return new_ops_forward_impl(input, output, ...); }
Binding the implementation in
pytorch/pybind.cpp
// src/pytorch/pybind.cpp ... Tensor new_ops_forward(Tensor input, Tensor output, ...); ... // bind with pybind11 m.def("new_ops_forward", &new_ops_forward, "new_ops_forward", py::arg("input"), py::arg("output"), ...); ...
Build MMCV again. Enjoy new ops in python
from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', ['new_ops_forward']) ... ext_module.new_ops_forward(input, output, ...)