Spaces:
Build error
Build error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import warnings | |
from functools import partial | |
from typing import Dict, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from mmengine.model import constant_init, kaiming_init | |
from mmengine.registry import MODELS | |
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm, _InstanceNorm | |
from .activation import build_activation_layer | |
from .conv import build_conv_layer | |
from .norm import build_norm_layer | |
from .padding import build_padding_layer | |
def efficient_conv_bn_eval_forward(bn: _BatchNorm, | |
conv: nn.modules.conv._ConvNd, | |
x: torch.Tensor): | |
""" | |
Implementation based on https://arxiv.org/abs/2305.11624 | |
"Tune-Mode ConvBN Blocks For Efficient Transfer Learning" | |
It leverages the associative law between convolution and affine transform, | |
i.e., normalize (weight conv feature) = (normalize weight) conv feature. | |
It works for Eval mode of ConvBN blocks during validation, and can be used | |
for training as well. It reduces memory and computation cost. | |
Args: | |
bn (_BatchNorm): a BatchNorm module. | |
conv (nn._ConvNd): a conv module | |
x (torch.Tensor): Input feature map. | |
""" | |
# These lines of code are designed to deal with various cases | |
# like bn without affine transform, and conv without bias | |
weight_on_the_fly = conv.weight | |
if conv.bias is not None: | |
bias_on_the_fly = conv.bias | |
else: | |
bias_on_the_fly = torch.zeros_like(bn.running_var) | |
if bn.weight is not None: | |
bn_weight = bn.weight | |
else: | |
bn_weight = torch.ones_like(bn.running_var) | |
if bn.bias is not None: | |
bn_bias = bn.bias | |
else: | |
bn_bias = torch.zeros_like(bn.running_var) | |
# shape of [C_out, 1, 1, 1] in Conv2d | |
weight_coeff = torch.rsqrt(bn.running_var + | |
bn.eps).reshape([-1] + [1] * | |
(len(conv.weight.shape) - 1)) | |
# shape of [C_out, 1, 1, 1] in Conv2d | |
coefff_on_the_fly = bn_weight.view_as(weight_coeff) * weight_coeff | |
# shape of [C_out, C_in, k, k] in Conv2d | |
weight_on_the_fly = weight_on_the_fly * coefff_on_the_fly | |
# shape of [C_out] in Conv2d | |
bias_on_the_fly = bn_bias + coefff_on_the_fly.flatten() *\ | |
(bias_on_the_fly - bn.running_mean) | |
return conv._conv_forward(x, weight_on_the_fly, bias_on_the_fly) | |
class ConvModule(nn.Module): | |
"""A conv block that bundles conv/norm/activation layers. | |
This block simplifies the usage of convolution layers, which are commonly | |
used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). | |
It is based upon three build methods: `build_conv_layer()`, | |
`build_norm_layer()` and `build_activation_layer()`. | |
Besides, we add some additional features in this module. | |
1. Automatically set `bias` of the conv layer. | |
2. Spectral norm is supported. | |
3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only | |
supports zero and circular padding, and we add "reflect" padding mode. | |
Args: | |
in_channels (int): Number of channels in the input feature map. | |
Same as that in ``nn._ConvNd``. | |
out_channels (int): Number of channels produced by the convolution. | |
Same as that in ``nn._ConvNd``. | |
kernel_size (int | tuple[int]): Size of the convolving kernel. | |
Same as that in ``nn._ConvNd``. | |
stride (int | tuple[int]): Stride of the convolution. | |
Same as that in ``nn._ConvNd``. | |
padding (int | tuple[int]): Zero-padding added to both sides of | |
the input. Same as that in ``nn._ConvNd``. | |
dilation (int | tuple[int]): Spacing between kernel elements. | |
Same as that in ``nn._ConvNd``. | |
groups (int): Number of blocked connections from input channels to | |
output channels. Same as that in ``nn._ConvNd``. | |
bias (bool | str): If specified as `auto`, it will be decided by the | |
norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise | |
False. Default: "auto". | |
conv_cfg (dict): Config dict for convolution layer. Default: None, | |
which means using conv2d. | |
norm_cfg (dict): Config dict for normalization layer. Default: None. | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='ReLU'). | |
inplace (bool): Whether to use inplace mode for activation. | |
Default: True. | |
with_spectral_norm (bool): Whether use spectral norm in conv module. | |
Default: False. | |
padding_mode (str): If the `padding_mode` has not been supported by | |
current `Conv2d` in PyTorch, we will use our own padding layer | |
instead. Currently, we support ['zeros', 'circular'] with official | |
implementation and ['reflect'] with our own implementation. | |
Default: 'zeros'. | |
order (tuple[str]): The order of conv/norm/activation layers. It is a | |
sequence of "conv", "norm" and "act". Common examples are | |
("conv", "norm", "act") and ("act", "conv", "norm"). | |
Default: ('conv', 'norm', 'act'). | |
efficient_conv_bn_eval (bool): Whether use efficient conv when the | |
consecutive bn is in eval mode (either training or testing), as | |
proposed in https://arxiv.org/abs/2305.11624 . Default: `False`. | |
""" | |
_abbr_ = 'conv_block' | |
def __init__(self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: Union[int, Tuple[int, int]], | |
stride: Union[int, Tuple[int, int]] = 1, | |
padding: Union[int, Tuple[int, int]] = 0, | |
dilation: Union[int, Tuple[int, int]] = 1, | |
groups: int = 1, | |
bias: Union[bool, str] = 'auto', | |
conv_cfg: Optional[Dict] = None, | |
norm_cfg: Optional[Dict] = None, | |
act_cfg: Optional[Dict] = dict(type='ReLU'), | |
inplace: bool = True, | |
with_spectral_norm: bool = False, | |
padding_mode: str = 'zeros', | |
order: tuple = ('conv', 'norm', 'act'), | |
efficient_conv_bn_eval: bool = False): | |
super().__init__() | |
assert conv_cfg is None or isinstance(conv_cfg, dict) | |
assert norm_cfg is None or isinstance(norm_cfg, dict) | |
assert act_cfg is None or isinstance(act_cfg, dict) | |
official_padding_mode = ['zeros', 'circular'] | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.act_cfg = act_cfg | |
self.inplace = inplace | |
self.with_spectral_norm = with_spectral_norm | |
self.with_explicit_padding = padding_mode not in official_padding_mode | |
self.order = order | |
assert isinstance(self.order, tuple) and len(self.order) == 3 | |
assert set(order) == {'conv', 'norm', 'act'} | |
self.with_norm = norm_cfg is not None | |
self.with_activation = act_cfg is not None | |
# if the conv layer is before a norm layer, bias is unnecessary. | |
if bias == 'auto': | |
bias = not self.with_norm | |
self.with_bias = bias | |
if self.with_explicit_padding: | |
pad_cfg = dict(type=padding_mode) | |
self.padding_layer = build_padding_layer(pad_cfg, padding) | |
# reset padding to 0 for conv module | |
conv_padding = 0 if self.with_explicit_padding else padding | |
# build convolution layer | |
self.conv = build_conv_layer( | |
conv_cfg, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=stride, | |
padding=conv_padding, | |
dilation=dilation, | |
groups=groups, | |
bias=bias) | |
# export the attributes of self.conv to a higher level for convenience | |
self.in_channels = self.conv.in_channels | |
self.out_channels = self.conv.out_channels | |
self.kernel_size = self.conv.kernel_size | |
self.stride = self.conv.stride | |
self.padding = padding | |
self.dilation = self.conv.dilation | |
self.transposed = self.conv.transposed | |
self.output_padding = self.conv.output_padding | |
self.groups = self.conv.groups | |
if self.with_spectral_norm: | |
self.conv = nn.utils.spectral_norm(self.conv) | |
# build normalization layers | |
if self.with_norm: | |
# norm layer is after conv layer | |
if order.index('norm') > order.index('conv'): | |
norm_channels = out_channels | |
else: | |
norm_channels = in_channels | |
self.norm_name, norm = build_norm_layer( | |
norm_cfg, norm_channels) # type: ignore | |
self.add_module(self.norm_name, norm) | |
if self.with_bias: | |
if isinstance(norm, (_BatchNorm, _InstanceNorm)): | |
warnings.warn( | |
'Unnecessary conv bias before batch/instance norm') | |
else: | |
self.norm_name = None # type: ignore | |
self.turn_on_efficient_conv_bn_eval(efficient_conv_bn_eval) | |
# build activation layer | |
if self.with_activation: | |
act_cfg_ = act_cfg.copy() # type: ignore | |
# nn.Tanh has no 'inplace' argument | |
if act_cfg_['type'] not in [ | |
'Tanh', 'PReLU', 'Sigmoid', 'HSigmoid', 'Swish', 'GELU' | |
]: | |
act_cfg_.setdefault('inplace', inplace) | |
self.activate = build_activation_layer(act_cfg_) | |
# Use msra init by default | |
self.init_weights() | |
def norm(self): | |
if self.norm_name: | |
return getattr(self, self.norm_name) | |
else: | |
return None | |
def init_weights(self): | |
# 1. It is mainly for customized conv layers with their own | |
# initialization manners by calling their own ``init_weights()``, | |
# and we do not want ConvModule to override the initialization. | |
# 2. For customized conv layers without their own initialization | |
# manners (that is, they don't have their own ``init_weights()``) | |
# and PyTorch's conv layers, they will be initialized by | |
# this method with default ``kaiming_init``. | |
# Note: For PyTorch's conv layers, they will be overwritten by our | |
# initialization implementation using default ``kaiming_init``. | |
if not hasattr(self.conv, 'init_weights'): | |
if self.with_activation and self.act_cfg['type'] == 'LeakyReLU': | |
nonlinearity = 'leaky_relu' | |
a = self.act_cfg.get('negative_slope', 0.01) | |
else: | |
nonlinearity = 'relu' | |
a = 0 | |
kaiming_init(self.conv, a=a, nonlinearity=nonlinearity) | |
if self.with_norm: | |
constant_init(self.norm, 1, bias=0) | |
def forward(self, | |
x: torch.Tensor, | |
activate: bool = True, | |
norm: bool = True) -> torch.Tensor: | |
layer_index = 0 | |
while layer_index < len(self.order): | |
layer = self.order[layer_index] | |
if layer == 'conv': | |
if self.with_explicit_padding: | |
x = self.padding_layer(x) | |
# if the next operation is norm and we have a norm layer in | |
# eval mode and we have enabled `efficient_conv_bn_eval` for | |
# the conv operator, then activate the optimized forward and | |
# skip the next norm operator since it has been fused | |
if layer_index + 1 < len(self.order) and \ | |
self.order[layer_index + 1] == 'norm' and norm and \ | |
self.with_norm and not self.norm.training and \ | |
self.efficient_conv_bn_eval_forward is not None: | |
self.conv.forward = partial( | |
self.efficient_conv_bn_eval_forward, self.norm, | |
self.conv) | |
layer_index += 1 | |
x = self.conv(x) | |
del self.conv.forward | |
else: | |
x = self.conv(x) | |
elif layer == 'norm' and norm and self.with_norm: | |
x = self.norm(x) | |
elif layer == 'act' and activate and self.with_activation: | |
x = self.activate(x) | |
layer_index += 1 | |
return x | |
def turn_on_efficient_conv_bn_eval(self, efficient_conv_bn_eval=True): | |
# efficient_conv_bn_eval works for conv + bn | |
# with `track_running_stats` option | |
if efficient_conv_bn_eval and self.norm \ | |
and isinstance(self.norm, _BatchNorm) \ | |
and self.norm.track_running_stats: | |
self.efficient_conv_bn_eval_forward = efficient_conv_bn_eval_forward # noqa: E501 | |
else: | |
self.efficient_conv_bn_eval_forward = None # type: ignore | |
def create_from_conv_bn(conv: torch.nn.modules.conv._ConvNd, | |
bn: torch.nn.modules.batchnorm._BatchNorm, | |
efficient_conv_bn_eval=True) -> 'ConvModule': | |
"""Create a ConvModule from a conv and a bn module.""" | |
self = ConvModule.__new__(ConvModule) | |
super(ConvModule, self).__init__() | |
self.conv_cfg = None | |
self.norm_cfg = None | |
self.act_cfg = None | |
self.inplace = False | |
self.with_spectral_norm = False | |
self.with_explicit_padding = False | |
self.order = ('conv', 'norm', 'act') | |
self.with_norm = True | |
self.with_activation = False | |
self.with_bias = conv.bias is not None | |
# build convolution layer | |
self.conv = conv | |
# export the attributes of self.conv to a higher level for convenience | |
self.in_channels = self.conv.in_channels | |
self.out_channels = self.conv.out_channels | |
self.kernel_size = self.conv.kernel_size | |
self.stride = self.conv.stride | |
self.padding = self.conv.padding | |
self.dilation = self.conv.dilation | |
self.transposed = self.conv.transposed | |
self.output_padding = self.conv.output_padding | |
self.groups = self.conv.groups | |
# build normalization layers | |
self.norm_name, norm = 'bn', bn | |
self.add_module(self.norm_name, norm) | |
self.turn_on_efficient_conv_bn_eval(efficient_conv_bn_eval) | |
return self | |