Spaces:
Build error
Build error
File size: 14,734 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import warnings
from functools import partial
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from mmengine.model import constant_init, kaiming_init
from mmengine.registry import MODELS
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm, _InstanceNorm
from .activation import build_activation_layer
from .conv import build_conv_layer
from .norm import build_norm_layer
from .padding import build_padding_layer
def efficient_conv_bn_eval_forward(bn: _BatchNorm,
conv: nn.modules.conv._ConvNd,
x: torch.Tensor):
"""
Implementation based on https://arxiv.org/abs/2305.11624
"Tune-Mode ConvBN Blocks For Efficient Transfer Learning"
It leverages the associative law between convolution and affine transform,
i.e., normalize (weight conv feature) = (normalize weight) conv feature.
It works for Eval mode of ConvBN blocks during validation, and can be used
for training as well. It reduces memory and computation cost.
Args:
bn (_BatchNorm): a BatchNorm module.
conv (nn._ConvNd): a conv module
x (torch.Tensor): Input feature map.
"""
# These lines of code are designed to deal with various cases
# like bn without affine transform, and conv without bias
weight_on_the_fly = conv.weight
if conv.bias is not None:
bias_on_the_fly = conv.bias
else:
bias_on_the_fly = torch.zeros_like(bn.running_var)
if bn.weight is not None:
bn_weight = bn.weight
else:
bn_weight = torch.ones_like(bn.running_var)
if bn.bias is not None:
bn_bias = bn.bias
else:
bn_bias = torch.zeros_like(bn.running_var)
# shape of [C_out, 1, 1, 1] in Conv2d
weight_coeff = torch.rsqrt(bn.running_var +
bn.eps).reshape([-1] + [1] *
(len(conv.weight.shape) - 1))
# shape of [C_out, 1, 1, 1] in Conv2d
coefff_on_the_fly = bn_weight.view_as(weight_coeff) * weight_coeff
# shape of [C_out, C_in, k, k] in Conv2d
weight_on_the_fly = weight_on_the_fly * coefff_on_the_fly
# shape of [C_out] in Conv2d
bias_on_the_fly = bn_bias + coefff_on_the_fly.flatten() *\
(bias_on_the_fly - bn.running_mean)
return conv._conv_forward(x, weight_on_the_fly, bias_on_the_fly)
@MODELS.register_module()
class ConvModule(nn.Module):
"""A conv block that bundles conv/norm/activation layers.
This block simplifies the usage of convolution layers, which are commonly
used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
It is based upon three build methods: `build_conv_layer()`,
`build_norm_layer()` and `build_activation_layer()`.
Besides, we add some additional features in this module.
1. Automatically set `bias` of the conv layer.
2. Spectral norm is supported.
3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only
supports zero and circular padding, and we add "reflect" padding mode.
Args:
in_channels (int): Number of channels in the input feature map.
Same as that in ``nn._ConvNd``.
out_channels (int): Number of channels produced by the convolution.
Same as that in ``nn._ConvNd``.
kernel_size (int | tuple[int]): Size of the convolving kernel.
Same as that in ``nn._ConvNd``.
stride (int | tuple[int]): Stride of the convolution.
Same as that in ``nn._ConvNd``.
padding (int | tuple[int]): Zero-padding added to both sides of
the input. Same as that in ``nn._ConvNd``.
dilation (int | tuple[int]): Spacing between kernel elements.
Same as that in ``nn._ConvNd``.
groups (int): Number of blocked connections from input channels to
output channels. Same as that in ``nn._ConvNd``.
bias (bool | str): If specified as `auto`, it will be decided by the
norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise
False. Default: "auto".
conv_cfg (dict): Config dict for convolution layer. Default: None,
which means using conv2d.
norm_cfg (dict): Config dict for normalization layer. Default: None.
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU').
inplace (bool): Whether to use inplace mode for activation.
Default: True.
with_spectral_norm (bool): Whether use spectral norm in conv module.
Default: False.
padding_mode (str): If the `padding_mode` has not been supported by
current `Conv2d` in PyTorch, we will use our own padding layer
instead. Currently, we support ['zeros', 'circular'] with official
implementation and ['reflect'] with our own implementation.
Default: 'zeros'.
order (tuple[str]): The order of conv/norm/activation layers. It is a
sequence of "conv", "norm" and "act". Common examples are
("conv", "norm", "act") and ("act", "conv", "norm").
Default: ('conv', 'norm', 'act').
efficient_conv_bn_eval (bool): Whether use efficient conv when the
consecutive bn is in eval mode (either training or testing), as
proposed in https://arxiv.org/abs/2305.11624 . Default: `False`.
"""
_abbr_ = 'conv_block'
def __init__(self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
stride: Union[int, Tuple[int, int]] = 1,
padding: Union[int, Tuple[int, int]] = 0,
dilation: Union[int, Tuple[int, int]] = 1,
groups: int = 1,
bias: Union[bool, str] = 'auto',
conv_cfg: Optional[Dict] = None,
norm_cfg: Optional[Dict] = None,
act_cfg: Optional[Dict] = dict(type='ReLU'),
inplace: bool = True,
with_spectral_norm: bool = False,
padding_mode: str = 'zeros',
order: tuple = ('conv', 'norm', 'act'),
efficient_conv_bn_eval: bool = False):
super().__init__()
assert conv_cfg is None or isinstance(conv_cfg, dict)
assert norm_cfg is None or isinstance(norm_cfg, dict)
assert act_cfg is None or isinstance(act_cfg, dict)
official_padding_mode = ['zeros', 'circular']
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.inplace = inplace
self.with_spectral_norm = with_spectral_norm
self.with_explicit_padding = padding_mode not in official_padding_mode
self.order = order
assert isinstance(self.order, tuple) and len(self.order) == 3
assert set(order) == {'conv', 'norm', 'act'}
self.with_norm = norm_cfg is not None
self.with_activation = act_cfg is not None
# if the conv layer is before a norm layer, bias is unnecessary.
if bias == 'auto':
bias = not self.with_norm
self.with_bias = bias
if self.with_explicit_padding:
pad_cfg = dict(type=padding_mode)
self.padding_layer = build_padding_layer(pad_cfg, padding)
# reset padding to 0 for conv module
conv_padding = 0 if self.with_explicit_padding else padding
# build convolution layer
self.conv = build_conv_layer(
conv_cfg,
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=conv_padding,
dilation=dilation,
groups=groups,
bias=bias)
# export the attributes of self.conv to a higher level for convenience
self.in_channels = self.conv.in_channels
self.out_channels = self.conv.out_channels
self.kernel_size = self.conv.kernel_size
self.stride = self.conv.stride
self.padding = padding
self.dilation = self.conv.dilation
self.transposed = self.conv.transposed
self.output_padding = self.conv.output_padding
self.groups = self.conv.groups
if self.with_spectral_norm:
self.conv = nn.utils.spectral_norm(self.conv)
# build normalization layers
if self.with_norm:
# norm layer is after conv layer
if order.index('norm') > order.index('conv'):
norm_channels = out_channels
else:
norm_channels = in_channels
self.norm_name, norm = build_norm_layer(
norm_cfg, norm_channels) # type: ignore
self.add_module(self.norm_name, norm)
if self.with_bias:
if isinstance(norm, (_BatchNorm, _InstanceNorm)):
warnings.warn(
'Unnecessary conv bias before batch/instance norm')
else:
self.norm_name = None # type: ignore
self.turn_on_efficient_conv_bn_eval(efficient_conv_bn_eval)
# build activation layer
if self.with_activation:
act_cfg_ = act_cfg.copy() # type: ignore
# nn.Tanh has no 'inplace' argument
if act_cfg_['type'] not in [
'Tanh', 'PReLU', 'Sigmoid', 'HSigmoid', 'Swish', 'GELU'
]:
act_cfg_.setdefault('inplace', inplace)
self.activate = build_activation_layer(act_cfg_)
# Use msra init by default
self.init_weights()
@property
def norm(self):
if self.norm_name:
return getattr(self, self.norm_name)
else:
return None
def init_weights(self):
# 1. It is mainly for customized conv layers with their own
# initialization manners by calling their own ``init_weights()``,
# and we do not want ConvModule to override the initialization.
# 2. For customized conv layers without their own initialization
# manners (that is, they don't have their own ``init_weights()``)
# and PyTorch's conv layers, they will be initialized by
# this method with default ``kaiming_init``.
# Note: For PyTorch's conv layers, they will be overwritten by our
# initialization implementation using default ``kaiming_init``.
if not hasattr(self.conv, 'init_weights'):
if self.with_activation and self.act_cfg['type'] == 'LeakyReLU':
nonlinearity = 'leaky_relu'
a = self.act_cfg.get('negative_slope', 0.01)
else:
nonlinearity = 'relu'
a = 0
kaiming_init(self.conv, a=a, nonlinearity=nonlinearity)
if self.with_norm:
constant_init(self.norm, 1, bias=0)
def forward(self,
x: torch.Tensor,
activate: bool = True,
norm: bool = True) -> torch.Tensor:
layer_index = 0
while layer_index < len(self.order):
layer = self.order[layer_index]
if layer == 'conv':
if self.with_explicit_padding:
x = self.padding_layer(x)
# if the next operation is norm and we have a norm layer in
# eval mode and we have enabled `efficient_conv_bn_eval` for
# the conv operator, then activate the optimized forward and
# skip the next norm operator since it has been fused
if layer_index + 1 < len(self.order) and \
self.order[layer_index + 1] == 'norm' and norm and \
self.with_norm and not self.norm.training and \
self.efficient_conv_bn_eval_forward is not None:
self.conv.forward = partial(
self.efficient_conv_bn_eval_forward, self.norm,
self.conv)
layer_index += 1
x = self.conv(x)
del self.conv.forward
else:
x = self.conv(x)
elif layer == 'norm' and norm and self.with_norm:
x = self.norm(x)
elif layer == 'act' and activate and self.with_activation:
x = self.activate(x)
layer_index += 1
return x
def turn_on_efficient_conv_bn_eval(self, efficient_conv_bn_eval=True):
# efficient_conv_bn_eval works for conv + bn
# with `track_running_stats` option
if efficient_conv_bn_eval and self.norm \
and isinstance(self.norm, _BatchNorm) \
and self.norm.track_running_stats:
self.efficient_conv_bn_eval_forward = efficient_conv_bn_eval_forward # noqa: E501
else:
self.efficient_conv_bn_eval_forward = None # type: ignore
@staticmethod
def create_from_conv_bn(conv: torch.nn.modules.conv._ConvNd,
bn: torch.nn.modules.batchnorm._BatchNorm,
efficient_conv_bn_eval=True) -> 'ConvModule':
"""Create a ConvModule from a conv and a bn module."""
self = ConvModule.__new__(ConvModule)
super(ConvModule, self).__init__()
self.conv_cfg = None
self.norm_cfg = None
self.act_cfg = None
self.inplace = False
self.with_spectral_norm = False
self.with_explicit_padding = False
self.order = ('conv', 'norm', 'act')
self.with_norm = True
self.with_activation = False
self.with_bias = conv.bias is not None
# build convolution layer
self.conv = conv
# export the attributes of self.conv to a higher level for convenience
self.in_channels = self.conv.in_channels
self.out_channels = self.conv.out_channels
self.kernel_size = self.conv.kernel_size
self.stride = self.conv.stride
self.padding = self.conv.padding
self.dilation = self.conv.dilation
self.transposed = self.conv.transposed
self.output_padding = self.conv.output_padding
self.groups = self.conv.groups
# build normalization layers
self.norm_name, norm = 'bn', bn
self.add_module(self.norm_name, norm)
self.turn_on_efficient_conv_bn_eval(efficient_conv_bn_eval)
return self
|