File size: 14,734 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import warnings
from functools import partial
from typing import Dict, Optional, Tuple, Union

import torch
import torch.nn as nn
from mmengine.model import constant_init, kaiming_init
from mmengine.registry import MODELS
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm, _InstanceNorm

from .activation import build_activation_layer
from .conv import build_conv_layer
from .norm import build_norm_layer
from .padding import build_padding_layer


def efficient_conv_bn_eval_forward(bn: _BatchNorm,
                                   conv: nn.modules.conv._ConvNd,
                                   x: torch.Tensor):
    """
    Implementation based on https://arxiv.org/abs/2305.11624
    "Tune-Mode ConvBN Blocks For Efficient Transfer Learning"
    It leverages the associative law between convolution and affine transform,
    i.e., normalize (weight conv feature) = (normalize weight) conv feature.
    It works for Eval mode of ConvBN blocks during validation, and can be used
    for training as well. It reduces memory and computation cost.

    Args:
        bn (_BatchNorm): a BatchNorm module.
        conv (nn._ConvNd): a conv module
        x (torch.Tensor): Input feature map.
    """
    # These lines of code are designed to deal with various cases
    # like bn without affine transform, and conv without bias
    weight_on_the_fly = conv.weight
    if conv.bias is not None:
        bias_on_the_fly = conv.bias
    else:
        bias_on_the_fly = torch.zeros_like(bn.running_var)

    if bn.weight is not None:
        bn_weight = bn.weight
    else:
        bn_weight = torch.ones_like(bn.running_var)

    if bn.bias is not None:
        bn_bias = bn.bias
    else:
        bn_bias = torch.zeros_like(bn.running_var)

    # shape of [C_out, 1, 1, 1] in Conv2d
    weight_coeff = torch.rsqrt(bn.running_var +
                               bn.eps).reshape([-1] + [1] *
                                               (len(conv.weight.shape) - 1))
    # shape of [C_out, 1, 1, 1] in Conv2d
    coefff_on_the_fly = bn_weight.view_as(weight_coeff) * weight_coeff

    # shape of [C_out, C_in, k, k] in Conv2d
    weight_on_the_fly = weight_on_the_fly * coefff_on_the_fly
    # shape of [C_out] in Conv2d
    bias_on_the_fly = bn_bias + coefff_on_the_fly.flatten() *\
        (bias_on_the_fly - bn.running_mean)

    return conv._conv_forward(x, weight_on_the_fly, bias_on_the_fly)


@MODELS.register_module()
class ConvModule(nn.Module):
    """A conv block that bundles conv/norm/activation layers.

    This block simplifies the usage of convolution layers, which are commonly
    used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
    It is based upon three build methods: `build_conv_layer()`,
    `build_norm_layer()` and `build_activation_layer()`.

    Besides, we add some additional features in this module.
    1. Automatically set `bias` of the conv layer.
    2. Spectral norm is supported.
    3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only
    supports zero and circular padding, and we add "reflect" padding mode.

    Args:
        in_channels (int): Number of channels in the input feature map.
            Same as that in ``nn._ConvNd``.
        out_channels (int): Number of channels produced by the convolution.
            Same as that in ``nn._ConvNd``.
        kernel_size (int | tuple[int]): Size of the convolving kernel.
            Same as that in ``nn._ConvNd``.
        stride (int | tuple[int]): Stride of the convolution.
            Same as that in ``nn._ConvNd``.
        padding (int | tuple[int]): Zero-padding added to both sides of
            the input. Same as that in ``nn._ConvNd``.
        dilation (int | tuple[int]): Spacing between kernel elements.
            Same as that in ``nn._ConvNd``.
        groups (int): Number of blocked connections from input channels to
            output channels. Same as that in ``nn._ConvNd``.
        bias (bool | str): If specified as `auto`, it will be decided by the
            norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise
            False. Default: "auto".
        conv_cfg (dict): Config dict for convolution layer. Default: None,
            which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer. Default: None.
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='ReLU').
        inplace (bool): Whether to use inplace mode for activation.
            Default: True.
        with_spectral_norm (bool): Whether use spectral norm in conv module.
            Default: False.
        padding_mode (str): If the `padding_mode` has not been supported by
            current `Conv2d` in PyTorch, we will use our own padding layer
            instead. Currently, we support ['zeros', 'circular'] with official
            implementation and ['reflect'] with our own implementation.
            Default: 'zeros'.
        order (tuple[str]): The order of conv/norm/activation layers. It is a
            sequence of "conv", "norm" and "act". Common examples are
            ("conv", "norm", "act") and ("act", "conv", "norm").
            Default: ('conv', 'norm', 'act').
        efficient_conv_bn_eval (bool): Whether use efficient conv when the
            consecutive bn is in eval mode (either training or testing), as
            proposed in https://arxiv.org/abs/2305.11624 . Default: `False`.
    """

    _abbr_ = 'conv_block'

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: Union[int, Tuple[int, int]],
                 stride: Union[int, Tuple[int, int]] = 1,
                 padding: Union[int, Tuple[int, int]] = 0,
                 dilation: Union[int, Tuple[int, int]] = 1,
                 groups: int = 1,
                 bias: Union[bool, str] = 'auto',
                 conv_cfg: Optional[Dict] = None,
                 norm_cfg: Optional[Dict] = None,
                 act_cfg: Optional[Dict] = dict(type='ReLU'),
                 inplace: bool = True,
                 with_spectral_norm: bool = False,
                 padding_mode: str = 'zeros',
                 order: tuple = ('conv', 'norm', 'act'),
                 efficient_conv_bn_eval: bool = False):
        super().__init__()
        assert conv_cfg is None or isinstance(conv_cfg, dict)
        assert norm_cfg is None or isinstance(norm_cfg, dict)
        assert act_cfg is None or isinstance(act_cfg, dict)
        official_padding_mode = ['zeros', 'circular']
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.inplace = inplace
        self.with_spectral_norm = with_spectral_norm
        self.with_explicit_padding = padding_mode not in official_padding_mode
        self.order = order
        assert isinstance(self.order, tuple) and len(self.order) == 3
        assert set(order) == {'conv', 'norm', 'act'}

        self.with_norm = norm_cfg is not None
        self.with_activation = act_cfg is not None
        # if the conv layer is before a norm layer, bias is unnecessary.
        if bias == 'auto':
            bias = not self.with_norm
        self.with_bias = bias

        if self.with_explicit_padding:
            pad_cfg = dict(type=padding_mode)
            self.padding_layer = build_padding_layer(pad_cfg, padding)

        # reset padding to 0 for conv module
        conv_padding = 0 if self.with_explicit_padding else padding
        # build convolution layer
        self.conv = build_conv_layer(
            conv_cfg,
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=conv_padding,
            dilation=dilation,
            groups=groups,
            bias=bias)
        # export the attributes of self.conv to a higher level for convenience
        self.in_channels = self.conv.in_channels
        self.out_channels = self.conv.out_channels
        self.kernel_size = self.conv.kernel_size
        self.stride = self.conv.stride
        self.padding = padding
        self.dilation = self.conv.dilation
        self.transposed = self.conv.transposed
        self.output_padding = self.conv.output_padding
        self.groups = self.conv.groups

        if self.with_spectral_norm:
            self.conv = nn.utils.spectral_norm(self.conv)

        # build normalization layers
        if self.with_norm:
            # norm layer is after conv layer
            if order.index('norm') > order.index('conv'):
                norm_channels = out_channels
            else:
                norm_channels = in_channels
            self.norm_name, norm = build_norm_layer(
                norm_cfg, norm_channels)  # type: ignore
            self.add_module(self.norm_name, norm)
            if self.with_bias:
                if isinstance(norm, (_BatchNorm, _InstanceNorm)):
                    warnings.warn(
                        'Unnecessary conv bias before batch/instance norm')
        else:
            self.norm_name = None  # type: ignore

        self.turn_on_efficient_conv_bn_eval(efficient_conv_bn_eval)

        # build activation layer
        if self.with_activation:
            act_cfg_ = act_cfg.copy()  # type: ignore
            # nn.Tanh has no 'inplace' argument
            if act_cfg_['type'] not in [
                    'Tanh', 'PReLU', 'Sigmoid', 'HSigmoid', 'Swish', 'GELU'
            ]:
                act_cfg_.setdefault('inplace', inplace)
            self.activate = build_activation_layer(act_cfg_)

        # Use msra init by default
        self.init_weights()

    @property
    def norm(self):
        if self.norm_name:
            return getattr(self, self.norm_name)
        else:
            return None

    def init_weights(self):
        # 1. It is mainly for customized conv layers with their own
        #    initialization manners by calling their own ``init_weights()``,
        #    and we do not want ConvModule to override the initialization.
        # 2. For customized conv layers without their own initialization
        #    manners (that is, they don't have their own ``init_weights()``)
        #    and PyTorch's conv layers, they will be initialized by
        #    this method with default ``kaiming_init``.
        # Note: For PyTorch's conv layers, they will be overwritten by our
        #    initialization implementation using default ``kaiming_init``.
        if not hasattr(self.conv, 'init_weights'):
            if self.with_activation and self.act_cfg['type'] == 'LeakyReLU':
                nonlinearity = 'leaky_relu'
                a = self.act_cfg.get('negative_slope', 0.01)
            else:
                nonlinearity = 'relu'
                a = 0
            kaiming_init(self.conv, a=a, nonlinearity=nonlinearity)
        if self.with_norm:
            constant_init(self.norm, 1, bias=0)

    def forward(self,
                x: torch.Tensor,
                activate: bool = True,
                norm: bool = True) -> torch.Tensor:
        layer_index = 0
        while layer_index < len(self.order):
            layer = self.order[layer_index]
            if layer == 'conv':
                if self.with_explicit_padding:
                    x = self.padding_layer(x)
                # if the next operation is norm and we have a norm layer in
                # eval mode and we have enabled `efficient_conv_bn_eval` for
                # the conv operator, then activate the optimized forward and
                # skip the next norm operator since it has been fused
                if layer_index + 1 < len(self.order) and \
                        self.order[layer_index + 1] == 'norm' and norm and \
                        self.with_norm and not self.norm.training and \
                        self.efficient_conv_bn_eval_forward is not None:
                    self.conv.forward = partial(
                        self.efficient_conv_bn_eval_forward, self.norm,
                        self.conv)
                    layer_index += 1
                    x = self.conv(x)
                    del self.conv.forward
                else:
                    x = self.conv(x)
            elif layer == 'norm' and norm and self.with_norm:
                x = self.norm(x)
            elif layer == 'act' and activate and self.with_activation:
                x = self.activate(x)
            layer_index += 1
        return x

    def turn_on_efficient_conv_bn_eval(self, efficient_conv_bn_eval=True):
        # efficient_conv_bn_eval works for conv + bn
        # with `track_running_stats` option
        if efficient_conv_bn_eval and self.norm \
                            and isinstance(self.norm, _BatchNorm) \
                            and self.norm.track_running_stats:
            self.efficient_conv_bn_eval_forward = efficient_conv_bn_eval_forward  # noqa: E501
        else:
            self.efficient_conv_bn_eval_forward = None  # type: ignore

    @staticmethod
    def create_from_conv_bn(conv: torch.nn.modules.conv._ConvNd,
                            bn: torch.nn.modules.batchnorm._BatchNorm,
                            efficient_conv_bn_eval=True) -> 'ConvModule':
        """Create a ConvModule from a conv and a bn module."""
        self = ConvModule.__new__(ConvModule)
        super(ConvModule, self).__init__()

        self.conv_cfg = None
        self.norm_cfg = None
        self.act_cfg = None
        self.inplace = False
        self.with_spectral_norm = False
        self.with_explicit_padding = False
        self.order = ('conv', 'norm', 'act')

        self.with_norm = True
        self.with_activation = False
        self.with_bias = conv.bias is not None

        # build convolution layer
        self.conv = conv
        # export the attributes of self.conv to a higher level for convenience
        self.in_channels = self.conv.in_channels
        self.out_channels = self.conv.out_channels
        self.kernel_size = self.conv.kernel_size
        self.stride = self.conv.stride
        self.padding = self.conv.padding
        self.dilation = self.conv.dilation
        self.transposed = self.conv.transposed
        self.output_padding = self.conv.output_padding
        self.groups = self.conv.groups

        # build normalization layers
        self.norm_name, norm = 'bn', bn
        self.add_module(self.norm_name, norm)

        self.turn_on_efficient_conv_bn_eval(efficient_conv_bn_eval)

        return self