Spaces:
Sleeping
Sleeping
from recommendation_engine import prepare_input, scrape_url, get_recommendations | |
import numpy as np | |
import streamlit as st | |
def precision_at_k(preds, relevant, k): | |
preds_k = preds[:k] | |
return sum([1 for p in preds_k if p in relevant]) / k | |
def recall_at_k(preds, relevant, k): | |
preds_k = preds[:k] | |
return sum([1 for p in preds_k if p in relevant]) / len(relevant) | |
def average_precision(preds, relevant, k): | |
ap = 0 | |
num_relevant = 0 | |
for i in range(min(k, len(preds))): | |
if preds[i] in relevant: | |
num_relevant += 1 | |
ap += num_relevant / (i + 1) | |
return ap / min(len(relevant), k) if relevant else 0 | |
def clean_names(name): | |
return name.replace("Java Script", "JavaScript") | |
def evaluate(test_queries, k=3): | |
recalls, maps = [], [] | |
for item in test_queries: | |
jd_text = scrape_url(item["url"]) if item["url"] else "" | |
input_text = prepare_input(item["query"], item["duration"], jd_text) | |
recommendations = get_recommendations(input_text, top_k=k) | |
pred_names = [clean_names(rec["name"]) for rec in recommendations] | |
gt = [clean_names(g) for g in item["relevant_assessments"]] | |
r = recall_at_k(pred_names, gt, k) | |
ap = average_precision(pred_names, gt, k) | |
recalls.append(r) | |
maps.append(ap) | |
st.markdown(f""" | |
**Query:** {item['query']} | |
**Recall@{k}:** {r:.3f} | |
**AP@{k}:** {ap:.3f} | |
--- | |
""") | |
st.success(f"π Mean Recall@{k}: {np.mean(recalls):.3f}") | |
st.success(f"π MAP@{k}: {np.mean(maps):.3f}") | |