Spaces:
Sleeping
Sleeping
Upload 9 files
Browse files- .gitattributes +2 -35
- README.md +1 -12
- api.py +22 -0
- app.py +40 -0
- data.csv +0 -0
- embeddings.pth +3 -0
- evaluate.py +51 -0
- recommendation_engine.py +69 -0
- requirements.txt +11 -0
.gitattributes
CHANGED
@@ -1,35 +1,2 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
nomic_model/* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
embeddings.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,12 +1 @@
|
|
1 |
-
|
2 |
-
title: Rag App
|
3 |
-
emoji: π¨
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: indigo
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.44.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
"# SHL Assessment Recommender"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
api.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from recommendation_engine import scrape_url, prepare_input, get_recommendations
|
4 |
+
|
5 |
+
app = FastAPI()
|
6 |
+
|
7 |
+
class QueryRequest(BaseModel):
|
8 |
+
query: str
|
9 |
+
duration: int
|
10 |
+
url: str = None
|
11 |
+
|
12 |
+
@app.get("/")
|
13 |
+
def root():
|
14 |
+
return {"message": "SHL Assessment Recommendation API is running."}
|
15 |
+
|
16 |
+
|
17 |
+
@app.post("/recommend")
|
18 |
+
def recommend(data: QueryRequest):
|
19 |
+
jd_text = scrape_url(data.url) if data.url else ""
|
20 |
+
input_text = prepare_input(data.query, data.duration, jd_text)
|
21 |
+
recommendations = get_recommendations(input_text, top_k=10, max_duration=data.duration)
|
22 |
+
return {"results": recommendations}
|
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import streamlit as st
|
3 |
+
from recommendation_engine import scrape_url, prepare_input, get_recommendations,traced_get_recommendations
|
4 |
+
from evaluate import evaluate
|
5 |
+
import json
|
6 |
+
|
7 |
+
st.title("SHL Assessment Recommender")
|
8 |
+
|
9 |
+
query = st.text_area("Enter job query")
|
10 |
+
duration = st.number_input("Max assessment duration (minutes)", min_value=5, max_value=120, value=40)
|
11 |
+
top_k = st.number_input("Number of result required", min_value=3, max_value=15, value=10)
|
12 |
+
url = st.text_input("Optional Job Description URL")
|
13 |
+
|
14 |
+
if st.button("Recommend Assessments"):
|
15 |
+
jd_text = scrape_url(url) if url else ""
|
16 |
+
query_text = prepare_input(query, duration, jd_text)
|
17 |
+
recommendations = traced_get_recommendations(query_text, top_k=10, max_duration=duration)
|
18 |
+
st.write("Query Input:", query_text)
|
19 |
+
st.subheader("Top Recommendations")
|
20 |
+
st.table(recommendations)
|
21 |
+
|
22 |
+
st.header("π Evaluation")
|
23 |
+
|
24 |
+
eval_json = st.text_area("Enter test queries as JSON array", height=300, value="""[
|
25 |
+
{
|
26 |
+
"query": "I am hiring for Java developers who can also collaborate effectively with my business teams. Looking for an assessment(s) that can be completed in 40 minutes.",
|
27 |
+
"duration": 40,
|
28 |
+
"url": "",
|
29 |
+
"relevant_assessments": ["Java Programming Test", "Team Collaboration Test"]
|
30 |
+
}
|
31 |
+
]""")
|
32 |
+
|
33 |
+
if st.button("Run Evaluation"):
|
34 |
+
try:
|
35 |
+
test_queries = json.loads(eval_json)
|
36 |
+
evaluate(test_queries, k=3)
|
37 |
+
except Exception as e:
|
38 |
+
st.error(f"Error parsing input or running evaluation: {e}")
|
39 |
+
|
40 |
+
|
data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
embeddings.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b17237d1f2eb8b8fa8765c2dd87f8b18ed27ef4844067fb9898ce330bd8e5f5
|
3 |
+
size 1732204
|
evaluate.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from recommendation_engine import prepare_input, scrape_url, get_recommendations
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
def precision_at_k(preds, relevant, k):
|
6 |
+
preds_k = preds[:k]
|
7 |
+
return sum([1 for p in preds_k if p in relevant]) / k
|
8 |
+
|
9 |
+
def recall_at_k(preds, relevant, k):
|
10 |
+
preds_k = preds[:k]
|
11 |
+
return sum([1 for p in preds_k if p in relevant]) / len(relevant)
|
12 |
+
|
13 |
+
def average_precision(preds, relevant, k):
|
14 |
+
ap = 0
|
15 |
+
num_relevant = 0
|
16 |
+
for i in range(min(k, len(preds))):
|
17 |
+
if preds[i] in relevant:
|
18 |
+
num_relevant += 1
|
19 |
+
ap += num_relevant / (i + 1)
|
20 |
+
return ap / min(len(relevant), k) if relevant else 0
|
21 |
+
|
22 |
+
def clean_names(name):
|
23 |
+
return name.replace("Java Script", "JavaScript")
|
24 |
+
|
25 |
+
def evaluate(test_queries, k=3):
|
26 |
+
recalls, maps = [], []
|
27 |
+
|
28 |
+
for item in test_queries:
|
29 |
+
jd_text = scrape_url(item["url"]) if item["url"] else ""
|
30 |
+
input_text = prepare_input(item["query"], item["duration"], jd_text)
|
31 |
+
recommendations = get_recommendations(input_text, top_k=k)
|
32 |
+
|
33 |
+
pred_names = [clean_names(rec["name"]) for rec in recommendations]
|
34 |
+
gt = [clean_names(g) for g in item["relevant_assessments"]]
|
35 |
+
|
36 |
+
|
37 |
+
r = recall_at_k(pred_names, gt, k)
|
38 |
+
ap = average_precision(pred_names, gt, k)
|
39 |
+
|
40 |
+
recalls.append(r)
|
41 |
+
maps.append(ap)
|
42 |
+
|
43 |
+
st.markdown(f"""
|
44 |
+
**Query:** {item['query']}
|
45 |
+
**Recall@{k}:** {r:.3f}
|
46 |
+
**AP@{k}:** {ap:.3f}
|
47 |
+
---
|
48 |
+
""")
|
49 |
+
|
50 |
+
st.success(f"π Mean Recall@{k}: {np.mean(recalls):.3f}")
|
51 |
+
st.success(f"π MAP@{k}: {np.mean(maps):.3f}")
|
recommendation_engine.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# recommendation_engine.py
|
2 |
+
import requests
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
import pandas as pd
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
from langchain.callbacks.tracers import ConsoleCallbackHandler
|
9 |
+
from langsmith import traceable
|
10 |
+
|
11 |
+
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1",trust_remote_code=True)
|
12 |
+
|
13 |
+
catalog = pd.read_csv("data.csv")
|
14 |
+
embeddings = torch.load("embeddings.pth")
|
15 |
+
|
16 |
+
handler = ConsoleCallbackHandler()
|
17 |
+
|
18 |
+
def scrape_url(url):
|
19 |
+
try:
|
20 |
+
page = requests.get(url)
|
21 |
+
soup = BeautifulSoup(page.text, "html.parser")
|
22 |
+
return soup.get_text(separator=' ')
|
23 |
+
except Exception as e:
|
24 |
+
return ""
|
25 |
+
|
26 |
+
def clean_query_text(text):
|
27 |
+
replacements = {
|
28 |
+
"Java Script": "JavaScript",
|
29 |
+
"java script": "JavaScript",
|
30 |
+
"Java script": "JavaScript"
|
31 |
+
}
|
32 |
+
for wrong, correct in replacements.items():
|
33 |
+
text = text.replace(wrong, correct)
|
34 |
+
return text
|
35 |
+
|
36 |
+
def prepare_input(query, duration, jd_text=""):
|
37 |
+
cleaned_query = clean_query_text(query)
|
38 |
+
input_text = f"{cleaned_query}. Candidate should complete assessment in {duration} minutes. {jd_text}"
|
39 |
+
return input_text.strip()
|
40 |
+
|
41 |
+
def get_recommendations(query_text, top_k=10,max_duration = None):
|
42 |
+
query_embedding = model.encode(query_text)
|
43 |
+
scores = util.cos_sim(query_embedding, embeddings)[0].numpy()
|
44 |
+
ranked_indices = np.argsort(-scores)
|
45 |
+
|
46 |
+
results = []
|
47 |
+
for idx in ranked_indices:
|
48 |
+
item = catalog.iloc[idx]
|
49 |
+
print(f"Matched: {item['name']} with duration {item['assessment_length']}")
|
50 |
+
|
51 |
+
result = {
|
52 |
+
"name": item["name"],
|
53 |
+
"url": item["url"],
|
54 |
+
"remote_testing": item["remote"],
|
55 |
+
"adaptive": item["adaptive"],
|
56 |
+
"duration": item['assessment_length'],
|
57 |
+
"test_type": item["test_types"],
|
58 |
+
}
|
59 |
+
results.append(result)
|
60 |
+
|
61 |
+
if len(results) >= top_k:
|
62 |
+
break
|
63 |
+
|
64 |
+
return results
|
65 |
+
|
66 |
+
@traceable(name="SHL Recommendation Trace")
|
67 |
+
def traced_get_recommendations(query_text, top_k=10, max_duration=None):
|
68 |
+
return get_recommendations(query_text, top_k, max_duration)
|
69 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
sentence-transformers
|
5 |
+
torch
|
6 |
+
requests
|
7 |
+
beautifulsoup
|
8 |
+
json
|
9 |
+
langchain
|
10 |
+
langsmith
|
11 |
+
pydantic
|