iscc-sct / iscc_sct /demo.py
titusz's picture
Synced repo using 'sync_with_huggingface' Github Action
73ab668 verified
raw
history blame
13.2 kB
"""
Gradio demo showcasing ISCC Semantic Text Code.
"""
from loguru import logger as log
import gradio as gr
import iscc_sct as sct
import textwrap
import yaml
newline_symbols = {
"\u000a": "⏎", # Line Feed - Represented by the 'Return' symbol
"\u000b": "↨", # Vertical Tab - Represented by the 'Up Down Arrow' symbol
"\u000c": "␌", # Form Feed - Unicode Control Pictures representation
"\u000d": "↵", # Carriage Return - 'Downwards Arrow with Corner Leftwards' symbol
"\u0085": "⤓", # Next Line - 'Downwards Arrow with Double Stroke' symbol
"\u2028": "↲", # Line Separator - 'Downwards Arrow with Tip Leftwards' symbol
"\u2029": "¶", # Paragraph Separator - Represented by the 'Pilcrow' symbol
}
def no_nl(text):
"""Replace non-printable newline characters with printable symbols"""
for char, symbol in newline_symbols.items():
text = text.replace(char, symbol)
return text
def no_nl_inner(text):
"""Replace non-printable newline characters with printable symbols, ignoring leading and
trailing newlines"""
# Strip leading and trailing whitespace
stripped_text = text.strip()
# Replace newline characters within the text
for char, symbol in newline_symbols.items():
stripped_text = stripped_text.replace(char, symbol)
# Add back the leading and trailing newlines
leading_newlines = len(text) - len(text.lstrip())
trailing_newlines = len(text) - len(text.rstrip())
return "\n" * leading_newlines + stripped_text + "\n" * trailing_newlines
def clean_chunk(chunk):
"""Strip consecutive line breaks in text to a maximum of 2."""
return chunk.replace("\n\n", "\n")
def compute_iscc_code(text1, text2, bit_length):
code1 = sct.gen_text_code_semantic(text1, bits=bit_length)
code2 = sct.gen_text_code_semantic(text2, bits=bit_length)
similarity = compare_codes(code1["iscc"], code2["iscc"], bit_length)
return code1["iscc"], code2["iscc"], similarity
def compare_codes(code_a, code_b, bits):
if all([code_a, code_b]):
return generate_similarity_bar(hamming_to_cosine(sct.iscc_distance(code_a, code_b), bits))
def truncate_text(text, max_length=70):
return textwrap.shorten(text, width=max_length, placeholder="...")
def hamming_to_cosine(hamming_distance: int, dim: int) -> float:
"""Aproximate the cosine similarity for a given hamming distance and dimension"""
result = 1 - (2 * hamming_distance) / dim
return result
def generate_similarity_bar(similarity):
"""Generate a horizontal bar representing the similarity value, scaled to -100% to +100%."""
# Scale similarity from [-1, 1] to [-100, 100]
display_similarity = similarity * 100
# Calculate the width of the bar based on the absolute value of similarity
bar_width = int(abs(similarity) * 50) # 50% is half the width of the container
# Determine the color and starting position based on the sign of the similarity
color = "green" if similarity >= 0 else "red"
position = "left" if similarity >= 0 else "right"
# Adjust the text position to be centered within the colored bar
text_position = "left: 50%;" if similarity >= 0 else "right: 50%;"
text_alignment = (
"transform: translateX(-50%);" if similarity >= 0 else "transform: translateX(50%);"
)
bar_html = f"""
<h3>Semantic Similarity</h3>
<div style='width: 100%; border: 1px solid #ccc; height: 30px; position: relative; background-color: #eee;'>
<div style='height: 100%; width: {bar_width}%; background-color: {color}; position: absolute; {position}: 50%;'>
<span style='position: absolute; width: 100%; {text_position} top: 0; line-height: 30px; color: white; {text_alignment}'>{display_similarity:.2f}%</span>
</div>
</div>
"""
return bar_html
def load_samples():
with open("iscc_sct/samples.yml", "r", encoding="utf-8") as file:
return yaml.safe_load(file)["samples"]
samples = load_samples()
custom_css = """
"""
iscc_theme = gr.themes.Default(
font=[gr.themes.GoogleFont("Readex Pro")],
font_mono=[gr.themes.GoogleFont("JetBrains Mono")],
radius_size=gr.themes.sizes.radius_none,
)
with gr.Blocks(css=custom_css, theme=iscc_theme) as demo:
with gr.Row(variant="panel"):
gr.Markdown(
"""
## ✂️ ISCC Semantic Text-Code
Demo of cross-lingual Semantic Text-Code (proof of concept)
""",
)
with gr.Row(variant="panel"):
with gr.Column(variant="panel"):
sample_dropdown_a = gr.Dropdown(
choices=["None"] + [lang for lang in samples["a"]],
label="Select sample for Text A",
value="None",
)
with gr.Column(variant="panel"):
sample_dropdown_b = gr.Dropdown(
choices=["None"] + [lang for lang in samples["b"]],
label="Select sample for Text B",
value="None",
)
with gr.Row(variant="panel"):
with gr.Column(variant="panel"):
in_text_a = gr.TextArea(
label="Text A",
placeholder="Choose sample text from the dropdown above or type or paste your text.",
lines=12,
max_lines=12,
)
out_code_a = gr.Textbox(label="ISCC Code for Text A")
with gr.Column(variant="panel"):
in_text_b = gr.TextArea(
label="Text B",
placeholder="Choose sample text from the dropdown above or type or paste your text.",
lines=12,
max_lines=12,
)
out_code_b = gr.Textbox(label="ISCC Code for Text B")
with gr.Row(variant="panel"):
with gr.Column(variant="panel"):
out_similarity = gr.HTML(label="Similarity")
with gr.Row(variant="panel"):
in_iscc_bits = gr.Slider(
label="ISCC Bit-Length",
info="NUMBER OF BITS FOR OUTPUT ISCC",
minimum=64,
maximum=256,
step=32,
value=64,
)
with gr.Row(variant="panel"):
with gr.Column(variant="panel"):
out_chunks_a = gr.HighlightedText(
label="Chunked Text A",
interactive=False,
elem_id="chunked-text-a",
)
with gr.Column(variant="panel"):
out_chunks_b = gr.HighlightedText(
label="Chunked Text B",
interactive=False,
elem_id="chunked-text-b",
)
def update_sample_text(choice, group):
if choice == "None":
return ""
return samples[group][choice]
sample_dropdown_a.change(
lambda choice: update_sample_text(choice, "a"),
inputs=[sample_dropdown_a],
outputs=[in_text_a],
)
sample_dropdown_b.change(
lambda choice: update_sample_text(choice, "b"),
inputs=[sample_dropdown_b],
outputs=[in_text_b],
)
def process_text(text, nbits, suffix):
log.debug(f"{text[:20]}")
out_code_func = globals().get(f"out_code_{suffix}")
out_chunks_func = globals().get(f"out_chunks_{suffix}")
if not text:
return {
out_code_func: gr.Textbox(value=None),
out_chunks_func: gr.HighlightedText(value=None, elem_id="chunked-text"),
}
result = sct.gen_text_code_semantic(
text, bits=nbits, simprints=True, offsets=True, sizes=True, contents=True
)
iscc = sct.Metadata(**result).to_object_format()
# Generate chunked text with simprints and overlaps
features = iscc.features[0]
highlighted_chunks = []
overlaps = iscc.get_overlaps()
for i, feature in enumerate(features.simprints):
feature: sct.Feature
content = feature.content
# Remove leading overlap
if i > 0 and overlaps[i - 1]:
content = content[len(overlaps[i - 1]) :]
# Remove trailing overlap
if i < len(overlaps) and overlaps[i]:
content = content[: -len(overlaps[i])]
label = f"{feature.size}:{feature.simprint}"
highlighted_chunks.append((no_nl_inner(content), label))
if i < len(overlaps):
overlap = overlaps[i]
if overlap:
highlighted_chunks.append((f"\n{no_nl(overlap)}\n", "overlap"))
return {
out_code_func: gr.Textbox(value=iscc.iscc),
out_chunks_func: gr.HighlightedText(value=highlighted_chunks, elem_id="chunked-text"),
}
def recalculate_iscc(text_a, text_b, nbits):
code_a = sct.gen_text_code_semantic(text_a, bits=nbits)["iscc"] if text_a else None
code_b = sct.gen_text_code_semantic(text_b, bits=nbits)["iscc"] if text_b else None
if code_a and code_b:
similarity = compare_codes(code_a, code_b, nbits)
else:
similarity = None
return (
gr.Textbox(value=code_a) if code_a else gr.Textbox(),
gr.Textbox(value=code_b) if code_b else gr.Textbox(),
similarity,
)
in_text_a.change(
lambda text, nbits: process_text(text, nbits, "a"),
inputs=[in_text_a, in_iscc_bits],
outputs=[out_code_a, out_chunks_a],
show_progress="full",
trigger_mode="always_last",
)
in_text_b.change(
lambda text, nbits: process_text(text, nbits, "b"),
inputs=[in_text_b, in_iscc_bits],
outputs=[out_code_b, out_chunks_b],
show_progress="full",
trigger_mode="always_last",
)
in_iscc_bits.change(
recalculate_iscc,
inputs=[in_text_a, in_text_b, in_iscc_bits],
outputs=[out_code_a, out_code_b, out_similarity],
show_progress="full",
)
out_code_a.change(
compare_codes, inputs=[out_code_a, out_code_b, in_iscc_bits], outputs=[out_similarity]
)
out_code_b.change(
compare_codes, inputs=[out_code_a, out_code_b, in_iscc_bits], outputs=[out_similarity]
)
def reset_all():
return (
gr.Slider(value=128), # Reset ISCC Bit-Length
gr.Dropdown(
value="None", choices=["None"] + [f"a:{lang}" for lang in samples["a"]]
), # Reset sample dropdown A
gr.Dropdown(
value="None", choices=["None"] + [f"b:{lang}" for lang in samples["b"]]
), # Reset sample dropdown B
gr.TextArea(value=""), # Reset Text A
gr.TextArea(value=""), # Reset Text B
gr.Textbox(value=""), # Reset ISCC Code for Text A
gr.Textbox(value=""), # Reset ISCC Code for Text B
gr.HTML(value=""), # Reset Similarity
gr.HighlightedText(value=[]), # Reset Chunked Text A
gr.HighlightedText(value=[]), # Reset Chunked Text B
)
with gr.Row(variant="panel"):
reset_button = gr.Button("Reset All")
reset_button.click(
reset_all,
outputs=[
in_iscc_bits,
sample_dropdown_a,
sample_dropdown_b,
in_text_a,
in_text_b,
out_code_a,
out_code_b,
out_similarity,
out_chunks_a,
out_chunks_b,
],
)
with gr.Row(variant="panel"):
with gr.Column(variant="panel"):
gr.Markdown(
"""
## Understanding ISCC Semantic Text-Codes
### What is an ISCC Semantic Text-Code?
An ISCC Semantic Text-Code is a digital fingerprint for text content. It captures the meaning of the text,
not just the exact words.
### How does it work?
1. **Input**: You provide a text in any language.
2. **Processing**: Our system analyzes the meaning of the text.
3. **Output**: A unique code is generated that represents the text's content.
### What can it do?
- **Cross-language matching**: It can recognize similar content across different languages.
- **Similarity detection**: It can measure how similar two texts are in meaning, not just in words.
- **Content identification**: It can help identify texts with similar content, even if the wording is different.
### How to use this demo:
1. **Enter text**: Type or paste text into either or both text boxes.
2. **Adjust bit length**: Use the slider to change the detail level of the code (higher = more detailed).
3. **View results**: See the generated ISCC code for each text.
4. **Compare**: Look at the similarity bar to see how alike the two texts are in meaning.
### Why is this useful?
- **Content creators**: Find similar content across languages.
- **Researchers**: Quickly compare documents or find related texts in different languages.
- **Publishers**: Identify potential translations or similar works efficiently.
This technology opens up new possibilities for understanding and managing text content across language barriers!
"""
)
if __name__ == "__main__": # pragma: no cover
demo.launch()