File size: 13,172 Bytes
b31f748 fda8a7a 73ab668 b31f748 63ba62d b31f748 fda8a7a b31f748 73ab668 b31f748 73ab668 0f2b045 73ab668 0f2b045 b31f748 73ab668 b31f748 fda8a7a 73ab668 b31f748 fda8a7a 73ab668 b31f748 73ab668 63ba62d 0f2b045 73ab668 0f2b045 73ab668 0f2b045 73ab668 0f2b045 73ab668 0f2b045 b31f748 a482560 63ba62d 73ab668 63ba62d fda8a7a b31f748 a482560 b31f748 63ba62d b31f748 a482560 b31f748 a482560 b31f748 63ba62d fda8a7a a482560 fda8a7a b31f748 73ab668 0f2b045 73ab668 0f2b045 63ba62d 0f2b045 63ba62d 0f2b045 fda8a7a 0f2b045 fda8a7a b31f748 fda8a7a b31f748 63ba62d b31f748 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
"""
Gradio demo showcasing ISCC Semantic Text Code.
"""
from loguru import logger as log
import gradio as gr
import iscc_sct as sct
import textwrap
import yaml
newline_symbols = {
"\u000a": "⏎", # Line Feed - Represented by the 'Return' symbol
"\u000b": "↨", # Vertical Tab - Represented by the 'Up Down Arrow' symbol
"\u000c": "␌", # Form Feed - Unicode Control Pictures representation
"\u000d": "↵", # Carriage Return - 'Downwards Arrow with Corner Leftwards' symbol
"\u0085": "⤓", # Next Line - 'Downwards Arrow with Double Stroke' symbol
"\u2028": "↲", # Line Separator - 'Downwards Arrow with Tip Leftwards' symbol
"\u2029": "¶", # Paragraph Separator - Represented by the 'Pilcrow' symbol
}
def no_nl(text):
"""Replace non-printable newline characters with printable symbols"""
for char, symbol in newline_symbols.items():
text = text.replace(char, symbol)
return text
def no_nl_inner(text):
"""Replace non-printable newline characters with printable symbols, ignoring leading and
trailing newlines"""
# Strip leading and trailing whitespace
stripped_text = text.strip()
# Replace newline characters within the text
for char, symbol in newline_symbols.items():
stripped_text = stripped_text.replace(char, symbol)
# Add back the leading and trailing newlines
leading_newlines = len(text) - len(text.lstrip())
trailing_newlines = len(text) - len(text.rstrip())
return "\n" * leading_newlines + stripped_text + "\n" * trailing_newlines
def clean_chunk(chunk):
"""Strip consecutive line breaks in text to a maximum of 2."""
return chunk.replace("\n\n", "\n")
def compute_iscc_code(text1, text2, bit_length):
code1 = sct.gen_text_code_semantic(text1, bits=bit_length)
code2 = sct.gen_text_code_semantic(text2, bits=bit_length)
similarity = compare_codes(code1["iscc"], code2["iscc"], bit_length)
return code1["iscc"], code2["iscc"], similarity
def compare_codes(code_a, code_b, bits):
if all([code_a, code_b]):
return generate_similarity_bar(hamming_to_cosine(sct.iscc_distance(code_a, code_b), bits))
def truncate_text(text, max_length=70):
return textwrap.shorten(text, width=max_length, placeholder="...")
def hamming_to_cosine(hamming_distance: int, dim: int) -> float:
"""Aproximate the cosine similarity for a given hamming distance and dimension"""
result = 1 - (2 * hamming_distance) / dim
return result
def generate_similarity_bar(similarity):
"""Generate a horizontal bar representing the similarity value, scaled to -100% to +100%."""
# Scale similarity from [-1, 1] to [-100, 100]
display_similarity = similarity * 100
# Calculate the width of the bar based on the absolute value of similarity
bar_width = int(abs(similarity) * 50) # 50% is half the width of the container
# Determine the color and starting position based on the sign of the similarity
color = "green" if similarity >= 0 else "red"
position = "left" if similarity >= 0 else "right"
# Adjust the text position to be centered within the colored bar
text_position = "left: 50%;" if similarity >= 0 else "right: 50%;"
text_alignment = (
"transform: translateX(-50%);" if similarity >= 0 else "transform: translateX(50%);"
)
bar_html = f"""
<h3>Semantic Similarity</h3>
<div style='width: 100%; border: 1px solid #ccc; height: 30px; position: relative; background-color: #eee;'>
<div style='height: 100%; width: {bar_width}%; background-color: {color}; position: absolute; {position}: 50%;'>
<span style='position: absolute; width: 100%; {text_position} top: 0; line-height: 30px; color: white; {text_alignment}'>{display_similarity:.2f}%</span>
</div>
</div>
"""
return bar_html
def load_samples():
with open("iscc_sct/samples.yml", "r", encoding="utf-8") as file:
return yaml.safe_load(file)["samples"]
samples = load_samples()
custom_css = """
"""
iscc_theme = gr.themes.Default(
font=[gr.themes.GoogleFont("Readex Pro")],
font_mono=[gr.themes.GoogleFont("JetBrains Mono")],
radius_size=gr.themes.sizes.radius_none,
)
with gr.Blocks(css=custom_css, theme=iscc_theme) as demo:
with gr.Row(variant="panel"):
gr.Markdown(
"""
## ✂️ ISCC Semantic Text-Code
Demo of cross-lingual Semantic Text-Code (proof of concept)
""",
)
with gr.Row(variant="panel"):
with gr.Column(variant="panel"):
sample_dropdown_a = gr.Dropdown(
choices=["None"] + [lang for lang in samples["a"]],
label="Select sample for Text A",
value="None",
)
with gr.Column(variant="panel"):
sample_dropdown_b = gr.Dropdown(
choices=["None"] + [lang for lang in samples["b"]],
label="Select sample for Text B",
value="None",
)
with gr.Row(variant="panel"):
with gr.Column(variant="panel"):
in_text_a = gr.TextArea(
label="Text A",
placeholder="Choose sample text from the dropdown above or type or paste your text.",
lines=12,
max_lines=12,
)
out_code_a = gr.Textbox(label="ISCC Code for Text A")
with gr.Column(variant="panel"):
in_text_b = gr.TextArea(
label="Text B",
placeholder="Choose sample text from the dropdown above or type or paste your text.",
lines=12,
max_lines=12,
)
out_code_b = gr.Textbox(label="ISCC Code for Text B")
with gr.Row(variant="panel"):
with gr.Column(variant="panel"):
out_similarity = gr.HTML(label="Similarity")
with gr.Row(variant="panel"):
in_iscc_bits = gr.Slider(
label="ISCC Bit-Length",
info="NUMBER OF BITS FOR OUTPUT ISCC",
minimum=64,
maximum=256,
step=32,
value=64,
)
with gr.Row(variant="panel"):
with gr.Column(variant="panel"):
out_chunks_a = gr.HighlightedText(
label="Chunked Text A",
interactive=False,
elem_id="chunked-text-a",
)
with gr.Column(variant="panel"):
out_chunks_b = gr.HighlightedText(
label="Chunked Text B",
interactive=False,
elem_id="chunked-text-b",
)
def update_sample_text(choice, group):
if choice == "None":
return ""
return samples[group][choice]
sample_dropdown_a.change(
lambda choice: update_sample_text(choice, "a"),
inputs=[sample_dropdown_a],
outputs=[in_text_a],
)
sample_dropdown_b.change(
lambda choice: update_sample_text(choice, "b"),
inputs=[sample_dropdown_b],
outputs=[in_text_b],
)
def process_text(text, nbits, suffix):
log.debug(f"{text[:20]}")
out_code_func = globals().get(f"out_code_{suffix}")
out_chunks_func = globals().get(f"out_chunks_{suffix}")
if not text:
return {
out_code_func: gr.Textbox(value=None),
out_chunks_func: gr.HighlightedText(value=None, elem_id="chunked-text"),
}
result = sct.gen_text_code_semantic(
text, bits=nbits, simprints=True, offsets=True, sizes=True, contents=True
)
iscc = sct.Metadata(**result).to_object_format()
# Generate chunked text with simprints and overlaps
features = iscc.features[0]
highlighted_chunks = []
overlaps = iscc.get_overlaps()
for i, feature in enumerate(features.simprints):
feature: sct.Feature
content = feature.content
# Remove leading overlap
if i > 0 and overlaps[i - 1]:
content = content[len(overlaps[i - 1]) :]
# Remove trailing overlap
if i < len(overlaps) and overlaps[i]:
content = content[: -len(overlaps[i])]
label = f"{feature.size}:{feature.simprint}"
highlighted_chunks.append((no_nl_inner(content), label))
if i < len(overlaps):
overlap = overlaps[i]
if overlap:
highlighted_chunks.append((f"\n{no_nl(overlap)}\n", "overlap"))
return {
out_code_func: gr.Textbox(value=iscc.iscc),
out_chunks_func: gr.HighlightedText(value=highlighted_chunks, elem_id="chunked-text"),
}
def recalculate_iscc(text_a, text_b, nbits):
code_a = sct.gen_text_code_semantic(text_a, bits=nbits)["iscc"] if text_a else None
code_b = sct.gen_text_code_semantic(text_b, bits=nbits)["iscc"] if text_b else None
if code_a and code_b:
similarity = compare_codes(code_a, code_b, nbits)
else:
similarity = None
return (
gr.Textbox(value=code_a) if code_a else gr.Textbox(),
gr.Textbox(value=code_b) if code_b else gr.Textbox(),
similarity,
)
in_text_a.change(
lambda text, nbits: process_text(text, nbits, "a"),
inputs=[in_text_a, in_iscc_bits],
outputs=[out_code_a, out_chunks_a],
show_progress="full",
trigger_mode="always_last",
)
in_text_b.change(
lambda text, nbits: process_text(text, nbits, "b"),
inputs=[in_text_b, in_iscc_bits],
outputs=[out_code_b, out_chunks_b],
show_progress="full",
trigger_mode="always_last",
)
in_iscc_bits.change(
recalculate_iscc,
inputs=[in_text_a, in_text_b, in_iscc_bits],
outputs=[out_code_a, out_code_b, out_similarity],
show_progress="full",
)
out_code_a.change(
compare_codes, inputs=[out_code_a, out_code_b, in_iscc_bits], outputs=[out_similarity]
)
out_code_b.change(
compare_codes, inputs=[out_code_a, out_code_b, in_iscc_bits], outputs=[out_similarity]
)
def reset_all():
return (
gr.Slider(value=128), # Reset ISCC Bit-Length
gr.Dropdown(
value="None", choices=["None"] + [f"a:{lang}" for lang in samples["a"]]
), # Reset sample dropdown A
gr.Dropdown(
value="None", choices=["None"] + [f"b:{lang}" for lang in samples["b"]]
), # Reset sample dropdown B
gr.TextArea(value=""), # Reset Text A
gr.TextArea(value=""), # Reset Text B
gr.Textbox(value=""), # Reset ISCC Code for Text A
gr.Textbox(value=""), # Reset ISCC Code for Text B
gr.HTML(value=""), # Reset Similarity
gr.HighlightedText(value=[]), # Reset Chunked Text A
gr.HighlightedText(value=[]), # Reset Chunked Text B
)
with gr.Row(variant="panel"):
reset_button = gr.Button("Reset All")
reset_button.click(
reset_all,
outputs=[
in_iscc_bits,
sample_dropdown_a,
sample_dropdown_b,
in_text_a,
in_text_b,
out_code_a,
out_code_b,
out_similarity,
out_chunks_a,
out_chunks_b,
],
)
with gr.Row(variant="panel"):
with gr.Column(variant="panel"):
gr.Markdown(
"""
## Understanding ISCC Semantic Text-Codes
### What is an ISCC Semantic Text-Code?
An ISCC Semantic Text-Code is a digital fingerprint for text content. It captures the meaning of the text,
not just the exact words.
### How does it work?
1. **Input**: You provide a text in any language.
2. **Processing**: Our system analyzes the meaning of the text.
3. **Output**: A unique code is generated that represents the text's content.
### What can it do?
- **Cross-language matching**: It can recognize similar content across different languages.
- **Similarity detection**: It can measure how similar two texts are in meaning, not just in words.
- **Content identification**: It can help identify texts with similar content, even if the wording is different.
### How to use this demo:
1. **Enter text**: Type or paste text into either or both text boxes.
2. **Adjust bit length**: Use the slider to change the detail level of the code (higher = more detailed).
3. **View results**: See the generated ISCC code for each text.
4. **Compare**: Look at the similarity bar to see how alike the two texts are in meaning.
### Why is this useful?
- **Content creators**: Find similar content across languages.
- **Researchers**: Quickly compare documents or find related texts in different languages.
- **Publishers**: Identify potential translations or similar works efficiently.
This technology opens up new possibilities for understanding and managing text content across language barriers!
"""
)
if __name__ == "__main__": # pragma: no cover
demo.launch()
|