Patryk Ptasiński
Add 15+ embedding models with dropdown selector and comprehensive API support
b366822
raw
history blame
8.04 kB
from typing import List, Dict, Any
import json
import gradio as gr
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from sentence_transformers import SentenceTransformer
# Available models
MODELS = {
"nomic-ai/nomic-embed-text-v1.5": {"trust_remote_code": True},
"nomic-ai/nomic-embed-text-v1": {"trust_remote_code": True},
"mixedbread-ai/mxbai-embed-large-v1": {"trust_remote_code": False},
"BAAI/bge-m3": {"trust_remote_code": False},
"sentence-transformers/all-MiniLM-L6-v2": {"trust_remote_code": False},
"sentence-transformers/all-mpnet-base-v2": {"trust_remote_code": False},
"Snowflake/snowflake-arctic-embed-m": {"trust_remote_code": False},
"Snowflake/snowflake-arctic-embed-l": {"trust_remote_code": False},
"Snowflake/snowflake-arctic-embed-m-v2.0": {"trust_remote_code": False},
"BAAI/bge-large-en-v1.5": {"trust_remote_code": False},
"BAAI/bge-base-en-v1.5": {"trust_remote_code": False},
"BAAI/bge-small-en-v1.5": {"trust_remote_code": False},
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2": {"trust_remote_code": False},
"ibm-granite/granite-embedding-30m-english": {"trust_remote_code": False},
"ibm-granite/granite-embedding-278m-multilingual": {"trust_remote_code": False},
}
# Model cache
loaded_models = {}
current_model_name = "nomic-ai/nomic-embed-text-v1.5"
# Initialize default model
def load_model(model_name: str):
global loaded_models
if model_name not in loaded_models:
config = MODELS.get(model_name, {})
loaded_models[model_name] = SentenceTransformer(
model_name,
trust_remote_code=config.get("trust_remote_code", False),
device='cpu'
)
return loaded_models[model_name]
# Load default model
model = load_model(current_model_name)
# Create FastAPI app
fastapi_app = FastAPI()
def embed(document: str, model_name: str = None):
if model_name and model_name in MODELS:
selected_model = load_model(model_name)
return selected_model.encode(document)
return model.encode(document)
# FastAPI endpoints
@fastapi_app.post("/embed")
async def embed_text(data: Dict[str, Any]):
"""Direct API endpoint for text embedding without queue"""
try:
text = data.get("text", "")
model_name = data.get("model", current_model_name)
if not text:
return JSONResponse(
status_code=400,
content={"error": "No text provided"}
)
if model_name not in MODELS:
return JSONResponse(
status_code=400,
content={"error": f"Model '{model_name}' not supported. Available models: {list(MODELS.keys())}"}
)
# Generate embedding
embedding = embed(text, model_name)
return JSONResponse(
content={
"embedding": embedding.tolist(),
"dim": len(embedding),
"model": model_name
}
)
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
@fastapi_app.get("/models")
async def list_models():
"""List available embedding models"""
return JSONResponse(
content={
"models": list(MODELS.keys()),
"default": current_model_name
}
)
with gr.Blocks(title="Multi-Model Text Embeddings") as app:
gr.Markdown("# Multi-Model Text Embeddings")
gr.Markdown("Generate embeddings for your text using 15+ state-of-the-art embedding models from Nomic, BGE, Snowflake, IBM Granite, and more.")
# Model selector dropdown
model_dropdown = gr.Dropdown(
choices=list(MODELS.keys()),
value=current_model_name,
label="Select Embedding Model",
info="Choose the embedding model to use"
)
# Create an input text box
text_input = gr.Textbox(label="Enter text to embed", placeholder="Type or paste your text here...")
# Create an output component to display the embedding
output = gr.JSON(label="Text Embedding")
# Add a submit button with API name
submit_btn = gr.Button("Generate Embedding", variant="primary")
# Handle both button click and text submission
submit_btn.click(embed, inputs=[text_input, model_dropdown], outputs=output, api_name="predict")
text_input.submit(embed, inputs=[text_input, model_dropdown], outputs=output)
# Add API usage guide
gr.Markdown("## API Usage")
gr.Markdown("""
You can use this API in two ways: via the direct FastAPI endpoint or through Gradio clients.
### List Available Models
```bash
curl https://ipepe-nomic-embeddings.hf.space/models
```
### Direct API Endpoint (No Queue!)
```bash
# Default model (nomic-ai/nomic-embed-text-v1.5)
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
-H "Content-Type: application/json" \
-d '{"text": "Your text to embed goes here"}'
# With specific model
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
-H "Content-Type: application/json" \
-d '{"text": "Your text to embed goes here", "model": "sentence-transformers/all-MiniLM-L6-v2"}'
```
Response format:
```json
{
"embedding": [0.123, -0.456, ...],
"dim": 384,
"model": "sentence-transformers/all-MiniLM-L6-v2"
}
```
### Python Example (Direct API)
```python
import requests
# List available models
models = requests.get("https://ipepe-nomic-embeddings.hf.space/models").json()
print(models["models"])
# Generate embedding with specific model
response = requests.post(
"https://ipepe-nomic-embeddings.hf.space/embed",
json={
"text": "Your text to embed goes here",
"model": "BAAI/bge-small-en-v1.5"
}
)
result = response.json()
embedding = result["embedding"]
```
### Python Example (Gradio Client)
```python
from gradio_client import Client
client = Client("ipepe/nomic-embeddings")
result = client.predict(
"Your text to embed goes here",
"nomic-ai/nomic-embed-text-v1.5", # model selection
api_name="/predict"
)
print(result) # Returns the embedding array
```
### Available Models
- `nomic-ai/nomic-embed-text-v1.5` (default) - High-performing open embedding model with large token context
- `nomic-ai/nomic-embed-text-v1` - Previous version of Nomic embedding model
- `mixedbread-ai/mxbai-embed-large-v1` - State-of-the-art large embedding model from mixedbread.ai
- `BAAI/bge-m3` - Multi-functional, multi-lingual, multi-granularity embedding model
- `sentence-transformers/all-MiniLM-L6-v2` - Fast, small embedding model for general use
- `sentence-transformers/all-mpnet-base-v2` - Balanced performance embedding model
- `Snowflake/snowflake-arctic-embed-m` - Medium-sized Arctic embedding model
- `Snowflake/snowflake-arctic-embed-l` - Large Arctic embedding model
- `Snowflake/snowflake-arctic-embed-m-v2.0` - Latest Arctic embedding with multilingual support
- `BAAI/bge-large-en-v1.5` - Large BGE embedding model for English
- `BAAI/bge-base-en-v1.5` - Base BGE embedding model for English
- `BAAI/bge-small-en-v1.5` - Small BGE embedding model for English
- `sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2` - Multilingual paraphrase model
- `ibm-granite/granite-embedding-30m-english` - IBM Granite 30M English embedding model
- `ibm-granite/granite-embedding-278m-multilingual` - IBM Granite 278M multilingual embedding model
""")
if __name__ == '__main__':
# Mount FastAPI app to Gradio
app = gr.mount_gradio_app(fastapi_app, app, path="/")
# Run with Uvicorn (Gradio uses this internally)
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)