Spaces:
Running
Running
File size: 8,044 Bytes
cc86f1b a7eec35 cc86f1b a7eec35 b366822 a7eec35 cc86f1b a7eec35 b366822 7be8da7 a7eec35 cc86f1b b366822 cc86f1b b366822 cc86f1b b366822 cc86f1b b366822 cc86f1b b366822 f336786 a7eec35 f336786 a7eec35 4ac731c a7eec35 4ac731c b366822 f336786 9530053 f336786 cc86f1b f336786 b366822 cc86f1b 65ff348 b366822 cc86f1b b366822 cc86f1b b366822 cc86f1b 65ff348 b366822 cc86f1b b366822 cc86f1b 65ff348 cc86f1b 329e33e b366822 329e33e 9530053 b366822 f336786 a7eec35 cc86f1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
from typing import List, Dict, Any
import json
import gradio as gr
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from sentence_transformers import SentenceTransformer
# Available models
MODELS = {
"nomic-ai/nomic-embed-text-v1.5": {"trust_remote_code": True},
"nomic-ai/nomic-embed-text-v1": {"trust_remote_code": True},
"mixedbread-ai/mxbai-embed-large-v1": {"trust_remote_code": False},
"BAAI/bge-m3": {"trust_remote_code": False},
"sentence-transformers/all-MiniLM-L6-v2": {"trust_remote_code": False},
"sentence-transformers/all-mpnet-base-v2": {"trust_remote_code": False},
"Snowflake/snowflake-arctic-embed-m": {"trust_remote_code": False},
"Snowflake/snowflake-arctic-embed-l": {"trust_remote_code": False},
"Snowflake/snowflake-arctic-embed-m-v2.0": {"trust_remote_code": False},
"BAAI/bge-large-en-v1.5": {"trust_remote_code": False},
"BAAI/bge-base-en-v1.5": {"trust_remote_code": False},
"BAAI/bge-small-en-v1.5": {"trust_remote_code": False},
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2": {"trust_remote_code": False},
"ibm-granite/granite-embedding-30m-english": {"trust_remote_code": False},
"ibm-granite/granite-embedding-278m-multilingual": {"trust_remote_code": False},
}
# Model cache
loaded_models = {}
current_model_name = "nomic-ai/nomic-embed-text-v1.5"
# Initialize default model
def load_model(model_name: str):
global loaded_models
if model_name not in loaded_models:
config = MODELS.get(model_name, {})
loaded_models[model_name] = SentenceTransformer(
model_name,
trust_remote_code=config.get("trust_remote_code", False),
device='cpu'
)
return loaded_models[model_name]
# Load default model
model = load_model(current_model_name)
# Create FastAPI app
fastapi_app = FastAPI()
def embed(document: str, model_name: str = None):
if model_name and model_name in MODELS:
selected_model = load_model(model_name)
return selected_model.encode(document)
return model.encode(document)
# FastAPI endpoints
@fastapi_app.post("/embed")
async def embed_text(data: Dict[str, Any]):
"""Direct API endpoint for text embedding without queue"""
try:
text = data.get("text", "")
model_name = data.get("model", current_model_name)
if not text:
return JSONResponse(
status_code=400,
content={"error": "No text provided"}
)
if model_name not in MODELS:
return JSONResponse(
status_code=400,
content={"error": f"Model '{model_name}' not supported. Available models: {list(MODELS.keys())}"}
)
# Generate embedding
embedding = embed(text, model_name)
return JSONResponse(
content={
"embedding": embedding.tolist(),
"dim": len(embedding),
"model": model_name
}
)
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
@fastapi_app.get("/models")
async def list_models():
"""List available embedding models"""
return JSONResponse(
content={
"models": list(MODELS.keys()),
"default": current_model_name
}
)
with gr.Blocks(title="Multi-Model Text Embeddings") as app:
gr.Markdown("# Multi-Model Text Embeddings")
gr.Markdown("Generate embeddings for your text using 15+ state-of-the-art embedding models from Nomic, BGE, Snowflake, IBM Granite, and more.")
# Model selector dropdown
model_dropdown = gr.Dropdown(
choices=list(MODELS.keys()),
value=current_model_name,
label="Select Embedding Model",
info="Choose the embedding model to use"
)
# Create an input text box
text_input = gr.Textbox(label="Enter text to embed", placeholder="Type or paste your text here...")
# Create an output component to display the embedding
output = gr.JSON(label="Text Embedding")
# Add a submit button with API name
submit_btn = gr.Button("Generate Embedding", variant="primary")
# Handle both button click and text submission
submit_btn.click(embed, inputs=[text_input, model_dropdown], outputs=output, api_name="predict")
text_input.submit(embed, inputs=[text_input, model_dropdown], outputs=output)
# Add API usage guide
gr.Markdown("## API Usage")
gr.Markdown("""
You can use this API in two ways: via the direct FastAPI endpoint or through Gradio clients.
### List Available Models
```bash
curl https://ipepe-nomic-embeddings.hf.space/models
```
### Direct API Endpoint (No Queue!)
```bash
# Default model (nomic-ai/nomic-embed-text-v1.5)
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
-H "Content-Type: application/json" \
-d '{"text": "Your text to embed goes here"}'
# With specific model
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
-H "Content-Type: application/json" \
-d '{"text": "Your text to embed goes here", "model": "sentence-transformers/all-MiniLM-L6-v2"}'
```
Response format:
```json
{
"embedding": [0.123, -0.456, ...],
"dim": 384,
"model": "sentence-transformers/all-MiniLM-L6-v2"
}
```
### Python Example (Direct API)
```python
import requests
# List available models
models = requests.get("https://ipepe-nomic-embeddings.hf.space/models").json()
print(models["models"])
# Generate embedding with specific model
response = requests.post(
"https://ipepe-nomic-embeddings.hf.space/embed",
json={
"text": "Your text to embed goes here",
"model": "BAAI/bge-small-en-v1.5"
}
)
result = response.json()
embedding = result["embedding"]
```
### Python Example (Gradio Client)
```python
from gradio_client import Client
client = Client("ipepe/nomic-embeddings")
result = client.predict(
"Your text to embed goes here",
"nomic-ai/nomic-embed-text-v1.5", # model selection
api_name="/predict"
)
print(result) # Returns the embedding array
```
### Available Models
- `nomic-ai/nomic-embed-text-v1.5` (default) - High-performing open embedding model with large token context
- `nomic-ai/nomic-embed-text-v1` - Previous version of Nomic embedding model
- `mixedbread-ai/mxbai-embed-large-v1` - State-of-the-art large embedding model from mixedbread.ai
- `BAAI/bge-m3` - Multi-functional, multi-lingual, multi-granularity embedding model
- `sentence-transformers/all-MiniLM-L6-v2` - Fast, small embedding model for general use
- `sentence-transformers/all-mpnet-base-v2` - Balanced performance embedding model
- `Snowflake/snowflake-arctic-embed-m` - Medium-sized Arctic embedding model
- `Snowflake/snowflake-arctic-embed-l` - Large Arctic embedding model
- `Snowflake/snowflake-arctic-embed-m-v2.0` - Latest Arctic embedding with multilingual support
- `BAAI/bge-large-en-v1.5` - Large BGE embedding model for English
- `BAAI/bge-base-en-v1.5` - Base BGE embedding model for English
- `BAAI/bge-small-en-v1.5` - Small BGE embedding model for English
- `sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2` - Multilingual paraphrase model
- `ibm-granite/granite-embedding-30m-english` - IBM Granite 30M English embedding model
- `ibm-granite/granite-embedding-278m-multilingual` - IBM Granite 278M multilingual embedding model
""")
if __name__ == '__main__':
# Mount FastAPI app to Gradio
app = gr.mount_gradio_app(fastapi_app, app, path="/")
# Run with Uvicorn (Gradio uses this internally)
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |