Spaces:
Running
Running
Patryk Ptasiński
commited on
Commit
·
9530053
1
Parent(s):
329e33e
Update API documentation to clarify queue system requirements
Browse files
app.py
CHANGED
@@ -28,40 +28,11 @@ with gr.Blocks(title="Nomic Text Embeddings") as app:
|
|
28 |
text_input.submit(embed, inputs=text_input, outputs=output)
|
29 |
|
30 |
# Add API usage guide
|
31 |
-
gr.Markdown("## API Usage
|
32 |
gr.Markdown("""
|
33 |
-
You can use this API programmatically
|
34 |
|
35 |
-
###
|
36 |
-
```bash
|
37 |
-
curl -X POST https://ipepe-nomic-embeddings.hf.space/api/predict \
|
38 |
-
-H "Content-Type: application/json" \
|
39 |
-
-d '{
|
40 |
-
"fn_index": 0,
|
41 |
-
"data": ["Your text to embed goes here"]
|
42 |
-
}'
|
43 |
-
```
|
44 |
-
|
45 |
-
### Method 2: Direct API endpoint
|
46 |
-
```bash
|
47 |
-
curl -X POST https://ipepe-nomic-embeddings.hf.space/run/predict \
|
48 |
-
-H "Content-Type: application/json" \
|
49 |
-
-d '{
|
50 |
-
"data": ["Your text to embed goes here"]
|
51 |
-
}'
|
52 |
-
```
|
53 |
-
|
54 |
-
The response will be in JSON format:
|
55 |
-
```json
|
56 |
-
{
|
57 |
-
"data": [[0.123, -0.456, 0.789, ...]],
|
58 |
-
"duration": 0.123
|
59 |
-
}
|
60 |
-
```
|
61 |
-
|
62 |
-
Replace `https://ipepe-nomic-embeddings.hf.space` with your actual Space URL if different.
|
63 |
-
|
64 |
-
### Python Example
|
65 |
```python
|
66 |
from gradio_client import Client
|
67 |
|
@@ -72,6 +43,32 @@ with gr.Blocks(title="Nomic Text Embeddings") as app:
|
|
72 |
)
|
73 |
print(result) # Returns the embedding array
|
74 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
""")
|
76 |
|
77 |
if __name__ == '__main__':
|
|
|
28 |
text_input.submit(embed, inputs=text_input, outputs=output)
|
29 |
|
30 |
# Add API usage guide
|
31 |
+
gr.Markdown("## API Usage")
|
32 |
gr.Markdown("""
|
33 |
+
You can use this API programmatically. Hugging Face Spaces use a queue system for API calls.
|
34 |
|
35 |
+
### Recommended: Python Client
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
```python
|
37 |
from gradio_client import Client
|
38 |
|
|
|
43 |
)
|
44 |
print(result) # Returns the embedding array
|
45 |
```
|
46 |
+
|
47 |
+
### Using cURL (requires session handling)
|
48 |
+
For direct HTTP requests, you need to:
|
49 |
+
1. Join the queue
|
50 |
+
2. Poll for results
|
51 |
+
|
52 |
+
This is more complex with cURL. Here's a simplified example using the Gradio Python client instead:
|
53 |
+
|
54 |
+
```bash
|
55 |
+
# Install the client first
|
56 |
+
pip install gradio_client
|
57 |
+
|
58 |
+
# Then use Python
|
59 |
+
python -c "from gradio_client import Client; client = Client('ipepe/nomic-embeddings'); print(client.predict('Your text here', api_name='/predict'))"
|
60 |
+
```
|
61 |
+
|
62 |
+
### JavaScript/Node.js Example
|
63 |
+
```javascript
|
64 |
+
import { client } from "@gradio/client";
|
65 |
+
|
66 |
+
const app = await client("ipepe/nomic-embeddings");
|
67 |
+
const result = await app.predict("/predict", ["Your text to embed goes here"]);
|
68 |
+
console.log(result.data);
|
69 |
+
```
|
70 |
+
|
71 |
+
The response will contain the embedding array as a list of floats.
|
72 |
""")
|
73 |
|
74 |
if __name__ == '__main__':
|