|
import marimo |
|
|
|
__generated_with = "0.11.5" |
|
app = marimo.App(width="medium") |
|
|
|
@app.cell(hide_code=True) |
|
def _(mo): |
|
mo.md( |
|
r""" |
|
# Generate random flat quantum permutation matrices |
|
# |
|
""" |
|
) |
|
return |
|
|
|
|
|
@app.cell(hide_code=True) |
|
def _(mo): |
|
mo.md( |
|
r""" |
|
Let $A$ be a unital $C^*$-algebra. An $n \times n$ matrix $u = (u_{ij})_{1\le i,j\le n} \in \mathcal M_n(A)$ |
|
is called a **quantum permtuation matrix** if it satisfies the conditions below: |
|
|
|
1. *Projection Entries:* Each entry is a projection: |
|
$$u_{ij}^2 = u_{ij} \quad \text{and} \quad u_{ij}^* = u_{ij} \quad \text{for all } i,j.$$ |
|
|
|
2. *Row and Column Sums:* The entries in each row and each column sum to the unit of $A$: |
|
$$\sum_{j=1}^n u_{ij} = 1_A \quad \text{for all } i=1,\dots,n,$$ |
|
$$\sum_{i=1}^n u_{ij} = 1_A \quad \text{for all } j=1,\dots,n.$$ |
|
""" |
|
) |
|
return |
|
|
|
|
|
@app.cell(hide_code=True) |
|
def _(mo): |
|
mo.md( |
|
""" |
|
We are interested here in the special case where: |
|
|
|
1. the algebra $A$ is finite dimensional: $A = \mathcal M_d(\mathbb C)$ |
|
2. the projections $u_{ij}$ have *unit rank* (we call $u$ *flat*); in particular $d=n$. |
|
""" |
|
) |
|
return |
|
|
|
|
|
@app.cell |
|
def _(mo): |
|
mo.md( |
|
""" |
|
## An alogrithm for generating random flat quantum permutation matrices |
|
## |
|
""" |
|
) |
|
return |
|
|
|
|
|
@app.cell |
|
def _(mo): |
|
mo.md( |
|
r""" |
|
We propose the following very simple algorithm for generating quantum permutation matrices, based on normalizing the rows and the columns of a matrix of unit rank projections. The alternating normalization of rows and columns is inspired by the **Sinkhorn algorithm** for producing random bistochastic matrices. |
|
|
|
1. Start from a random matrix: $u_{ij}$ is the orthogonal projection on a random gaussian vector |
|
2. While the error is larger than some predefined constant and the maximal number of steps has not been attained: |
|
3. Normalize each row of $u$ |
|
4. Normalize each column of $u$ |
|
5. End-while |
|
6. Output the matrix $u$ |
|
""" |
|
) |
|
return |
|
|
|
|
|
@app.cell |
|
def _(mo): |
|
mo.md( |
|
r""" |
|
The row (respectively the column) normalization procedures are performed as follows. Collect all the vectors appearing on the $i$-th row of $u$ in a matrix $R_i$. Replace $R_i$ by $\tilde R_i$, the *closest unitary matrix* to $R_i$. This matrix can be obtained from the *singular value decomposition* of $R_i$: |
|
$$\text{ if } R_i = V_i \Delta_i W_i^*, \, \text{ then }\, \tilde R_i = V_i W_i^*.$$ |
|
""" |
|
) |
|
return |
|
|
|
|
|
@app.cell |
|
def _(mo): |
|
mo.md( |
|
""" |
|
## Implementation |
|
## |
|
""" |
|
) |
|
return |
|
|
|
|
|
@app.cell |
|
def _(mo): |
|
eps_slider = mo.ui.slider(0, 10, value=6) |
|
max_iter_slider = mo.ui.slider(1, 10000, value=2000) |
|
n_slider = mo.ui.slider(2, 20, step=1, value=4) |
|
return eps_slider, max_iter_slider, n_slider |
|
|
|
|
|
@app.cell |
|
def _(eps_slider, mo): |
|
mo.md(f"-lg(Error tolerance): {eps_slider} \t error_tolerance = 1e-{eps_slider.value}") |
|
return |
|
|
|
|
|
@app.cell |
|
def _(max_iter_slider, mo): |
|
mo.md(f"Max iterations: {max_iter_slider} \t max_iter = {max_iter_slider.value}") |
|
return |
|
|
|
|
|
@app.cell |
|
def _(mo, n_slider): |
|
mo.md(f"Matrix dimension: {n_slider} \t n = {n_slider.value}") |
|
return |
|
|
|
|
|
@app.cell |
|
def _(mo): |
|
button = mo.ui.run_button(label="Randomize!") |
|
button |
|
return (button,) |
|
|
|
|
|
@app.cell |
|
def _(errors, plt, scalar_products): |
|
|
|
fig, axs = plt.subplots(1, 2, figsize=(12, 5)) |
|
|
|
|
|
axs[0].semilogy(errors) |
|
axs[0].set_xlabel('Iteration') |
|
axs[0].set_ylabel('Error (log scale)') |
|
axs[0].set_title('Error Convergence') |
|
axs[0].grid(True) |
|
|
|
|
|
axs[1].hist(scalar_products, bins=30, edgecolor='black') |
|
axs[1].set_xlabel('Absolute Values Squared of Scalar Products') |
|
axs[1].set_ylabel('Frequency') |
|
axs[1].set_title('Histogram of Absolute Values Squared of Scalar Products') |
|
axs[1].grid(True) |
|
|
|
|
|
plt.tight_layout() |
|
plt.gca() |
|
return axs, fig |
|
|
|
|
|
@app.cell |
|
def _(mo): |
|
mo.md(r"""Note that for $n=2,3$ the histogram of scalar product shows only 0's and 1's: the vectors are either colinear or orthogonal. In other words, the elements $u_{ij}$ **commute**. For $n \geq 4$ this is no longer the case: the scalar product between vectors can take arbitrary values.""") |
|
return |
|
|
|
|
|
@app.cell |
|
def _(mo): |
|
mo.md( |
|
r""" |
|
## Open questions |
|
## |
|
|
|
1. Prove the convergence of the algorithm for generic initializations. |
|
2. Find the speed of convergence for arbitrary $n$ |
|
3. What is the distribution of the scalar products for (large / given) $n$? How about the maximal norm of a commutator $[u_{ij}, u_{kl}]$? |
|
""" |
|
) |
|
return |
|
|
|
|
|
@app.cell |
|
def _(mo): |
|
mo.md( |
|
r""" |
|
## References |
|
## |
|
|
|
1. S. Wang, “Quantum symmetry groups of finite spaces,” _Communications in mathematical physics_, vol. 195, no. 1, pp. 195–211, 1998. |
|
2. T. Banica, J. Bichon, and B. Collins, “Quantum permutation groups: a survey,” _Banach Center Publications_, vol. 78, no. 1, pp. 13–34, 2007. |
|
3. T. Banica, I. Nechita, "Flat matrix models for quantum permutation groups," _Adv. Appl. Math._ 83, 24-46 (2017). |
|
""" |
|
) |
|
return |
|
|
|
|
|
@app.cell |
|
def _(np): |
|
def generate_random_complex_gaussian_matrix(n): |
|
matrix = np.empty((n, n, n), dtype=np.complex128) |
|
for i in range(n): |
|
for j in range(n): |
|
real_part = np.random.normal(size=n) |
|
imag_part = np.random.normal(size=n) |
|
matrix[i, j] = (real_part + 1j * imag_part) / np.sqrt(2) |
|
return matrix |
|
|
|
def orthonormalize_vectors_svd(vectors): |
|
u, _, v = np.linalg.svd(vectors) |
|
return u @ v |
|
|
|
def error_QPM(u): |
|
err = -1; |
|
|
|
for i in range(u.shape[0]): |
|
slice = u[i, :, :] |
|
err = max(err, np.linalg.norm(slice @ slice.conj().T - np.eye(slice.shape[0]))) |
|
slice = u[:, i, :] |
|
err = max(err, np.linalg.norm(slice @ slice.conj().T - np.eye(slice.shape[0]))) |
|
|
|
return err |
|
|
|
def scalar_products_QPM(u): |
|
|
|
scalar_products = [] |
|
for i in range(u.shape[0]): |
|
for j in range(1, u.shape[0]): |
|
for k in range(1, u.shape[0]): |
|
for l in range(1, u.shape[0]): |
|
scalar_product = np.abs(np.dot(u[i,j,:], u[k,l,:].conj()))**2 |
|
scalar_products.append(scalar_product) |
|
|
|
return scalar_products |
|
return ( |
|
error_QPM, |
|
generate_random_complex_gaussian_matrix, |
|
orthonormalize_vectors_svd, |
|
scalar_products_QPM, |
|
) |
|
|
|
|
|
@app.cell |
|
def _(): |
|
import marimo as mo |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
return mo, np, plt |
|
|
|
|
|
@app.cell |
|
def _( |
|
button, |
|
eps_slider, |
|
error_QPM, |
|
generate_random_complex_gaussian_matrix, |
|
max_iter_slider, |
|
n_slider, |
|
orthonormalize_vectors_svd, |
|
scalar_products_QPM, |
|
): |
|
button |
|
|
|
u = generate_random_complex_gaussian_matrix(n_slider.value) |
|
|
|
error_tolerance = 10**(-eps_slider.value) |
|
max_iter = max_iter_slider.value |
|
|
|
iter = 0 |
|
error = error_QPM(u) |
|
errors = [error] |
|
scalar_products = scalar_products_QPM(u) |
|
|
|
while error > error_tolerance and iter < max_iter: |
|
|
|
|
|
for i in range(n_slider.value): |
|
u[i, :, :] = orthonormalize_vectors_svd(u[i, :, :]) |
|
|
|
|
|
for j in range(n_slider.value): |
|
u[:, j, :] = orthonormalize_vectors_svd(u[:, j, :]) |
|
|
|
error = error_QPM(u) |
|
errors.append(error) |
|
|
|
if iter % 10 == 0: |
|
scalar_products = scalar_products_QPM(u) |
|
iter += 1 |
|
return ( |
|
error, |
|
error_tolerance, |
|
errors, |
|
i, |
|
iter, |
|
j, |
|
max_iter, |
|
scalar_products, |
|
u, |
|
) |
|
|
|
|
|
@app.cell |
|
def _(): |
|
return |
|
|
|
|
|
if __name__ == "__main__": |
|
app.run() |
|
|