Upload 2 files
Browse files- generate-qpm.py +85 -0
- qpm-marimo.py +303 -0
generate-qpm.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
|
4 |
+
def generate_random_complex_gaussian_matrix(n):
|
5 |
+
matrix = np.empty((n, n, n), dtype=np.complex128)
|
6 |
+
for i in range(n):
|
7 |
+
for j in range(n):
|
8 |
+
real_part = np.random.normal(size=n)
|
9 |
+
imag_part = np.random.normal(size=n)
|
10 |
+
matrix[i, j] = (real_part + 1j * imag_part) / np.sqrt(2)
|
11 |
+
return matrix
|
12 |
+
|
13 |
+
def orthonormalize_vectors_svd(vectors):
|
14 |
+
u, _, v = np.linalg.svd(vectors)
|
15 |
+
return u @ v
|
16 |
+
|
17 |
+
def error_QPM(u):
|
18 |
+
err = -1;
|
19 |
+
|
20 |
+
for i in range(u.shape[0]):
|
21 |
+
slice = u[i, :, :]
|
22 |
+
err = max(err, np.linalg.norm(slice @ slice.conj().T - np.eye(slice.shape[0])))
|
23 |
+
slice = u[:, i, :]
|
24 |
+
err = max(err, np.linalg.norm(slice @ slice.conj().T - np.eye(slice.shape[0])))
|
25 |
+
|
26 |
+
return err
|
27 |
+
|
28 |
+
def random_quantum_permutation_matrix(n, error_tolerance=1e-6, max_iter=1000):
|
29 |
+
u = generate_random_complex_gaussian_matrix(n)
|
30 |
+
|
31 |
+
iter = 0
|
32 |
+
error = error_QPM(u)
|
33 |
+
errors = [error] # Initialize a list to store errors
|
34 |
+
|
35 |
+
while error > error_tolerance and iter < max_iter:
|
36 |
+
|
37 |
+
# orthonormalize rows
|
38 |
+
for i in range(n):
|
39 |
+
u[i, :, :] = orthonormalize_vectors_svd(u[i, :, :])
|
40 |
+
|
41 |
+
# orthonormalize columns
|
42 |
+
for j in range(n):
|
43 |
+
u[:, j, :] = orthonormalize_vectors_svd(u[:, j, :])
|
44 |
+
|
45 |
+
error = error_QPM(u)
|
46 |
+
errors.append(error) # Append the current error to the list
|
47 |
+
iter += 1
|
48 |
+
|
49 |
+
return u, errors # Return both the matrix and the list of errors
|
50 |
+
|
51 |
+
|
52 |
+
# Example usage
|
53 |
+
u, errors = random_quantum_permutation_matrix(6)
|
54 |
+
|
55 |
+
# Create a figure with two subplots side by side
|
56 |
+
fig, axs = plt.subplots(1, 2, figsize=(12, 5))
|
57 |
+
|
58 |
+
# Plot the errors on a log scale in the first subplot
|
59 |
+
axs[0].semilogy(errors)
|
60 |
+
axs[0].set_xlabel('Iteration')
|
61 |
+
axs[0].set_ylabel('Error (log scale)')
|
62 |
+
axs[0].set_title('Error Convergence')
|
63 |
+
axs[0].grid(True)
|
64 |
+
|
65 |
+
# Calculate the absolute values squared of the scalar products of the vectors in the matrix u
|
66 |
+
scalar_products = []
|
67 |
+
for i in range(u.shape[0]):
|
68 |
+
for j in range(1, u.shape[0]):
|
69 |
+
for k in range(1, u.shape[0]):
|
70 |
+
for l in range(1, u.shape[0]):
|
71 |
+
scalar_product = np.abs(np.dot(u[i,j,:], u[k,l,:].conj()))**2
|
72 |
+
scalar_products.append(scalar_product)
|
73 |
+
|
74 |
+
# Plot the histogram in the second subplot
|
75 |
+
axs[1].hist(scalar_products, bins=30, edgecolor='black')
|
76 |
+
axs[1].set_xlabel('Absolute Values Squared of Scalar Products')
|
77 |
+
axs[1].set_ylabel('Frequency')
|
78 |
+
axs[1].set_title('Histogram of Absolute Values Squared of Scalar Products')
|
79 |
+
axs[1].grid(True)
|
80 |
+
|
81 |
+
# Adjust layout to prevent overlap
|
82 |
+
plt.tight_layout()
|
83 |
+
plt.show()
|
84 |
+
|
85 |
+
|
qpm-marimo.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import marimo
|
2 |
+
|
3 |
+
__generated_with = "0.11.5"
|
4 |
+
app = marimo.App(width="medium")
|
5 |
+
|
6 |
+
@app.cell(hide_code=True)
|
7 |
+
def _(mo):
|
8 |
+
mo.md(
|
9 |
+
r"""
|
10 |
+
# Generate random flat quantum permutation matrices
|
11 |
+
#
|
12 |
+
"""
|
13 |
+
)
|
14 |
+
return
|
15 |
+
|
16 |
+
|
17 |
+
@app.cell(hide_code=True)
|
18 |
+
def _(mo):
|
19 |
+
mo.md(
|
20 |
+
r"""
|
21 |
+
Let $A$ be a unital $C^*$-algebra. An $n \times n$ matrix $u = (u_{ij})_{1\le i,j\le n} \in \mathcal M_n(A)$
|
22 |
+
is called a **quantum permtuation matrix** if it satisfies the conditions below:
|
23 |
+
|
24 |
+
1. *Projection Entries:* Each entry is a projection:
|
25 |
+
$$u_{ij}^2 = u_{ij} \quad \text{and} \quad u_{ij}^* = u_{ij} \quad \text{for all } i,j.$$
|
26 |
+
|
27 |
+
2. *Row and Column Sums:* The entries in each row and each column sum to the unit of $A$:
|
28 |
+
$$\sum_{j=1}^n u_{ij} = 1_A \quad \text{for all } i=1,\dots,n,$$
|
29 |
+
$$\sum_{i=1}^n u_{ij} = 1_A \quad \text{for all } j=1,\dots,n.$$
|
30 |
+
"""
|
31 |
+
)
|
32 |
+
return
|
33 |
+
|
34 |
+
|
35 |
+
@app.cell(hide_code=True)
|
36 |
+
def _(mo):
|
37 |
+
mo.md(
|
38 |
+
"""
|
39 |
+
We are interested here in the special case where:
|
40 |
+
|
41 |
+
1. the algebra $A$ is finite dimensional: $A = \mathcal M_d(\mathbb C)$
|
42 |
+
2. the projections $u_{ij}$ have *unit rank* (we call $u$ *flat*); in particular $d=n$.
|
43 |
+
"""
|
44 |
+
)
|
45 |
+
return
|
46 |
+
|
47 |
+
|
48 |
+
@app.cell
|
49 |
+
def _(mo):
|
50 |
+
mo.md(
|
51 |
+
"""
|
52 |
+
## An alogrithm for generating random flat quantum permutation matrices
|
53 |
+
##
|
54 |
+
"""
|
55 |
+
)
|
56 |
+
return
|
57 |
+
|
58 |
+
|
59 |
+
@app.cell
|
60 |
+
def _(mo):
|
61 |
+
mo.md(
|
62 |
+
r"""
|
63 |
+
We propose the following very simple algorithm for generating quantum permutation matrices, based on normalizing the rows and the columns of a matrix of unit rank projections. The alternating normalization of rows and columns is inspired by the **Sinkhorn algorithm** for producing random bistochastic matrices.
|
64 |
+
|
65 |
+
1. Start from a random matrix: $u_{ij}$ is the orthogonal projection on a random gaussian vector
|
66 |
+
2. While the error is larger than some predefined constant and the maximal number of steps has not been attained:
|
67 |
+
3. Normalize each row of $u$
|
68 |
+
4. Normalize each column of $u$
|
69 |
+
5. End-while
|
70 |
+
6. Output the matrix $u$
|
71 |
+
"""
|
72 |
+
)
|
73 |
+
return
|
74 |
+
|
75 |
+
|
76 |
+
@app.cell
|
77 |
+
def _(mo):
|
78 |
+
mo.md(
|
79 |
+
r"""
|
80 |
+
The row (respectively the column) normalization procedures are performed as follows. Collect all the vectors appearing on the $i$-th row of $u$ in a matrix $R_i$. Replace $R_i$ by $\tilde R_i$, the *closest unitary matrix* to $R_i$. This matrix can be obtained from the *singular value decomposition* of $R_i$:
|
81 |
+
$$\text{ if } R_i = V_i \Delta_i W_i^*, \, \text{ then }\, \tilde R_i = V_i W_i^*.$$
|
82 |
+
"""
|
83 |
+
)
|
84 |
+
return
|
85 |
+
|
86 |
+
|
87 |
+
@app.cell
|
88 |
+
def _(mo):
|
89 |
+
mo.md(
|
90 |
+
"""
|
91 |
+
## Implementation
|
92 |
+
##
|
93 |
+
"""
|
94 |
+
)
|
95 |
+
return
|
96 |
+
|
97 |
+
|
98 |
+
@app.cell
|
99 |
+
def _(mo):
|
100 |
+
eps_slider = mo.ui.slider(0, 10, value=6)
|
101 |
+
max_iter_slider = mo.ui.slider(1, 10000, value=2000)
|
102 |
+
n_slider = mo.ui.slider(2, 20, step=1, value=4)
|
103 |
+
return eps_slider, max_iter_slider, n_slider
|
104 |
+
|
105 |
+
|
106 |
+
@app.cell
|
107 |
+
def _(eps_slider, mo):
|
108 |
+
mo.md(f"-lg(Error tolerance): {eps_slider} \t error_tolerance = 1e-{eps_slider.value}")
|
109 |
+
return
|
110 |
+
|
111 |
+
|
112 |
+
@app.cell
|
113 |
+
def _(max_iter_slider, mo):
|
114 |
+
mo.md(f"Max iterations: {max_iter_slider} \t max_iter = {max_iter_slider.value}")
|
115 |
+
return
|
116 |
+
|
117 |
+
|
118 |
+
@app.cell
|
119 |
+
def _(mo, n_slider):
|
120 |
+
mo.md(f"Matrix dimension: {n_slider} \t n = {n_slider.value}")
|
121 |
+
return
|
122 |
+
|
123 |
+
|
124 |
+
@app.cell
|
125 |
+
def _(mo):
|
126 |
+
button = mo.ui.run_button(label="Randomize!")
|
127 |
+
button
|
128 |
+
return (button,)
|
129 |
+
|
130 |
+
|
131 |
+
@app.cell
|
132 |
+
def _(errors, plt, scalar_products):
|
133 |
+
# Create a figure with two subplots side by side
|
134 |
+
fig, axs = plt.subplots(1, 2, figsize=(12, 5))
|
135 |
+
|
136 |
+
# Plot the errors on a log scale in the first subplot
|
137 |
+
axs[0].semilogy(errors)
|
138 |
+
axs[0].set_xlabel('Iteration')
|
139 |
+
axs[0].set_ylabel('Error (log scale)')
|
140 |
+
axs[0].set_title('Error Convergence')
|
141 |
+
axs[0].grid(True)
|
142 |
+
|
143 |
+
# Plot the histogram in the second subplot
|
144 |
+
axs[1].hist(scalar_products, bins=30, edgecolor='black')
|
145 |
+
axs[1].set_xlabel('Absolute Values Squared of Scalar Products')
|
146 |
+
axs[1].set_ylabel('Frequency')
|
147 |
+
axs[1].set_title('Histogram of Absolute Values Squared of Scalar Products')
|
148 |
+
axs[1].grid(True)
|
149 |
+
|
150 |
+
# Adjust layout to prevent overlap
|
151 |
+
plt.tight_layout()
|
152 |
+
plt.gca()
|
153 |
+
return axs, fig
|
154 |
+
|
155 |
+
|
156 |
+
@app.cell
|
157 |
+
def _(mo):
|
158 |
+
mo.md(r"""Note that for $n=2,3$ the histogram of scalar product shows only 0's and 1's: the vectors are either colinear or orthogonal. In other words, the elements $u_{ij}$ **commute**. For $n \geq 4$ this is no longer the case: the scalar product between vectors can take arbitrary values.""")
|
159 |
+
return
|
160 |
+
|
161 |
+
|
162 |
+
@app.cell
|
163 |
+
def _(mo):
|
164 |
+
mo.md(
|
165 |
+
r"""
|
166 |
+
## Open questions
|
167 |
+
##
|
168 |
+
|
169 |
+
1. Prove the convergence of the algorithm for generic initializations.
|
170 |
+
2. Find the speed of convergence for arbitrary $n$
|
171 |
+
3. What is the distribution of the scalar products for (large / given) $n$? How about the maximal norm of a commutator $[u_{ij}, u_{kl}]$?
|
172 |
+
"""
|
173 |
+
)
|
174 |
+
return
|
175 |
+
|
176 |
+
|
177 |
+
@app.cell
|
178 |
+
def _(mo):
|
179 |
+
mo.md(
|
180 |
+
r"""
|
181 |
+
## References
|
182 |
+
##
|
183 |
+
|
184 |
+
1. S. Wang, “Quantum symmetry groups of finite spaces,” _Communications in mathematical physics_, vol. 195, no. 1, pp. 195–211, 1998.
|
185 |
+
2. T. Banica, J. Bichon, and B. Collins, “Quantum permutation groups: a survey,” _Banach Center Publications_, vol. 78, no. 1, pp. 13–34, 2007.
|
186 |
+
3. T. Banica, I. Nechita, "Flat matrix models for quantum permutation groups," _Adv. Appl. Math._ 83, 24-46 (2017).
|
187 |
+
"""
|
188 |
+
)
|
189 |
+
return
|
190 |
+
|
191 |
+
|
192 |
+
@app.cell
|
193 |
+
def _(np):
|
194 |
+
def generate_random_complex_gaussian_matrix(n):
|
195 |
+
matrix = np.empty((n, n, n), dtype=np.complex128)
|
196 |
+
for i in range(n):
|
197 |
+
for j in range(n):
|
198 |
+
real_part = np.random.normal(size=n)
|
199 |
+
imag_part = np.random.normal(size=n)
|
200 |
+
matrix[i, j] = (real_part + 1j * imag_part) / np.sqrt(2)
|
201 |
+
return matrix
|
202 |
+
|
203 |
+
def orthonormalize_vectors_svd(vectors):
|
204 |
+
u, _, v = np.linalg.svd(vectors)
|
205 |
+
return u @ v
|
206 |
+
|
207 |
+
def error_QPM(u):
|
208 |
+
err = -1;
|
209 |
+
|
210 |
+
for i in range(u.shape[0]):
|
211 |
+
slice = u[i, :, :]
|
212 |
+
err = max(err, np.linalg.norm(slice @ slice.conj().T - np.eye(slice.shape[0])))
|
213 |
+
slice = u[:, i, :]
|
214 |
+
err = max(err, np.linalg.norm(slice @ slice.conj().T - np.eye(slice.shape[0])))
|
215 |
+
|
216 |
+
return err
|
217 |
+
|
218 |
+
def scalar_products_QPM(u):
|
219 |
+
# Calculate the absolute values squared of the scalar products of the vectors in the matrix u
|
220 |
+
scalar_products = []
|
221 |
+
for i in range(u.shape[0]):
|
222 |
+
for j in range(1, u.shape[0]):
|
223 |
+
for k in range(1, u.shape[0]):
|
224 |
+
for l in range(1, u.shape[0]):
|
225 |
+
scalar_product = np.abs(np.dot(u[i,j,:], u[k,l,:].conj()))**2
|
226 |
+
scalar_products.append(scalar_product)
|
227 |
+
|
228 |
+
return scalar_products
|
229 |
+
return (
|
230 |
+
error_QPM,
|
231 |
+
generate_random_complex_gaussian_matrix,
|
232 |
+
orthonormalize_vectors_svd,
|
233 |
+
scalar_products_QPM,
|
234 |
+
)
|
235 |
+
|
236 |
+
|
237 |
+
@app.cell
|
238 |
+
def _():
|
239 |
+
import marimo as mo
|
240 |
+
import numpy as np
|
241 |
+
import matplotlib.pyplot as plt
|
242 |
+
return mo, np, plt
|
243 |
+
|
244 |
+
|
245 |
+
@app.cell
|
246 |
+
def _(
|
247 |
+
button,
|
248 |
+
eps_slider,
|
249 |
+
error_QPM,
|
250 |
+
generate_random_complex_gaussian_matrix,
|
251 |
+
max_iter_slider,
|
252 |
+
n_slider,
|
253 |
+
orthonormalize_vectors_svd,
|
254 |
+
scalar_products_QPM,
|
255 |
+
):
|
256 |
+
button
|
257 |
+
|
258 |
+
u = generate_random_complex_gaussian_matrix(n_slider.value)
|
259 |
+
|
260 |
+
error_tolerance = 10**(-eps_slider.value)
|
261 |
+
max_iter = max_iter_slider.value
|
262 |
+
|
263 |
+
iter = 0
|
264 |
+
error = error_QPM(u)
|
265 |
+
errors = [error] # Initialize a list to store errors
|
266 |
+
scalar_products = scalar_products_QPM(u) # Initialize the scalar product list
|
267 |
+
|
268 |
+
while error > error_tolerance and iter < max_iter:
|
269 |
+
|
270 |
+
# orthonormalize rows
|
271 |
+
for i in range(n_slider.value):
|
272 |
+
u[i, :, :] = orthonormalize_vectors_svd(u[i, :, :])
|
273 |
+
|
274 |
+
# orthonormalize columns
|
275 |
+
for j in range(n_slider.value):
|
276 |
+
u[:, j, :] = orthonormalize_vectors_svd(u[:, j, :])
|
277 |
+
|
278 |
+
error = error_QPM(u)
|
279 |
+
errors.append(error) # Append the current error to the list
|
280 |
+
|
281 |
+
if iter % 10 == 0:
|
282 |
+
scalar_products = scalar_products_QPM(u) # Update scalar prodcuts
|
283 |
+
iter += 1
|
284 |
+
return (
|
285 |
+
error,
|
286 |
+
error_tolerance,
|
287 |
+
errors,
|
288 |
+
i,
|
289 |
+
iter,
|
290 |
+
j,
|
291 |
+
max_iter,
|
292 |
+
scalar_products,
|
293 |
+
u,
|
294 |
+
)
|
295 |
+
|
296 |
+
|
297 |
+
@app.cell
|
298 |
+
def _():
|
299 |
+
return
|
300 |
+
|
301 |
+
|
302 |
+
if __name__ == "__main__":
|
303 |
+
app.run()
|