Upload 2 files
Browse files- generate-qpm.py +85 -0
- qpm-marimo.py +303 -0
generate-qpm.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
|
| 4 |
+
def generate_random_complex_gaussian_matrix(n):
|
| 5 |
+
matrix = np.empty((n, n, n), dtype=np.complex128)
|
| 6 |
+
for i in range(n):
|
| 7 |
+
for j in range(n):
|
| 8 |
+
real_part = np.random.normal(size=n)
|
| 9 |
+
imag_part = np.random.normal(size=n)
|
| 10 |
+
matrix[i, j] = (real_part + 1j * imag_part) / np.sqrt(2)
|
| 11 |
+
return matrix
|
| 12 |
+
|
| 13 |
+
def orthonormalize_vectors_svd(vectors):
|
| 14 |
+
u, _, v = np.linalg.svd(vectors)
|
| 15 |
+
return u @ v
|
| 16 |
+
|
| 17 |
+
def error_QPM(u):
|
| 18 |
+
err = -1;
|
| 19 |
+
|
| 20 |
+
for i in range(u.shape[0]):
|
| 21 |
+
slice = u[i, :, :]
|
| 22 |
+
err = max(err, np.linalg.norm(slice @ slice.conj().T - np.eye(slice.shape[0])))
|
| 23 |
+
slice = u[:, i, :]
|
| 24 |
+
err = max(err, np.linalg.norm(slice @ slice.conj().T - np.eye(slice.shape[0])))
|
| 25 |
+
|
| 26 |
+
return err
|
| 27 |
+
|
| 28 |
+
def random_quantum_permutation_matrix(n, error_tolerance=1e-6, max_iter=1000):
|
| 29 |
+
u = generate_random_complex_gaussian_matrix(n)
|
| 30 |
+
|
| 31 |
+
iter = 0
|
| 32 |
+
error = error_QPM(u)
|
| 33 |
+
errors = [error] # Initialize a list to store errors
|
| 34 |
+
|
| 35 |
+
while error > error_tolerance and iter < max_iter:
|
| 36 |
+
|
| 37 |
+
# orthonormalize rows
|
| 38 |
+
for i in range(n):
|
| 39 |
+
u[i, :, :] = orthonormalize_vectors_svd(u[i, :, :])
|
| 40 |
+
|
| 41 |
+
# orthonormalize columns
|
| 42 |
+
for j in range(n):
|
| 43 |
+
u[:, j, :] = orthonormalize_vectors_svd(u[:, j, :])
|
| 44 |
+
|
| 45 |
+
error = error_QPM(u)
|
| 46 |
+
errors.append(error) # Append the current error to the list
|
| 47 |
+
iter += 1
|
| 48 |
+
|
| 49 |
+
return u, errors # Return both the matrix and the list of errors
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# Example usage
|
| 53 |
+
u, errors = random_quantum_permutation_matrix(6)
|
| 54 |
+
|
| 55 |
+
# Create a figure with two subplots side by side
|
| 56 |
+
fig, axs = plt.subplots(1, 2, figsize=(12, 5))
|
| 57 |
+
|
| 58 |
+
# Plot the errors on a log scale in the first subplot
|
| 59 |
+
axs[0].semilogy(errors)
|
| 60 |
+
axs[0].set_xlabel('Iteration')
|
| 61 |
+
axs[0].set_ylabel('Error (log scale)')
|
| 62 |
+
axs[0].set_title('Error Convergence')
|
| 63 |
+
axs[0].grid(True)
|
| 64 |
+
|
| 65 |
+
# Calculate the absolute values squared of the scalar products of the vectors in the matrix u
|
| 66 |
+
scalar_products = []
|
| 67 |
+
for i in range(u.shape[0]):
|
| 68 |
+
for j in range(1, u.shape[0]):
|
| 69 |
+
for k in range(1, u.shape[0]):
|
| 70 |
+
for l in range(1, u.shape[0]):
|
| 71 |
+
scalar_product = np.abs(np.dot(u[i,j,:], u[k,l,:].conj()))**2
|
| 72 |
+
scalar_products.append(scalar_product)
|
| 73 |
+
|
| 74 |
+
# Plot the histogram in the second subplot
|
| 75 |
+
axs[1].hist(scalar_products, bins=30, edgecolor='black')
|
| 76 |
+
axs[1].set_xlabel('Absolute Values Squared of Scalar Products')
|
| 77 |
+
axs[1].set_ylabel('Frequency')
|
| 78 |
+
axs[1].set_title('Histogram of Absolute Values Squared of Scalar Products')
|
| 79 |
+
axs[1].grid(True)
|
| 80 |
+
|
| 81 |
+
# Adjust layout to prevent overlap
|
| 82 |
+
plt.tight_layout()
|
| 83 |
+
plt.show()
|
| 84 |
+
|
| 85 |
+
|
qpm-marimo.py
ADDED
|
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import marimo
|
| 2 |
+
|
| 3 |
+
__generated_with = "0.11.5"
|
| 4 |
+
app = marimo.App(width="medium")
|
| 5 |
+
|
| 6 |
+
@app.cell(hide_code=True)
|
| 7 |
+
def _(mo):
|
| 8 |
+
mo.md(
|
| 9 |
+
r"""
|
| 10 |
+
# Generate random flat quantum permutation matrices
|
| 11 |
+
#
|
| 12 |
+
"""
|
| 13 |
+
)
|
| 14 |
+
return
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@app.cell(hide_code=True)
|
| 18 |
+
def _(mo):
|
| 19 |
+
mo.md(
|
| 20 |
+
r"""
|
| 21 |
+
Let $A$ be a unital $C^*$-algebra. An $n \times n$ matrix $u = (u_{ij})_{1\le i,j\le n} \in \mathcal M_n(A)$
|
| 22 |
+
is called a **quantum permtuation matrix** if it satisfies the conditions below:
|
| 23 |
+
|
| 24 |
+
1. *Projection Entries:* Each entry is a projection:
|
| 25 |
+
$$u_{ij}^2 = u_{ij} \quad \text{and} \quad u_{ij}^* = u_{ij} \quad \text{for all } i,j.$$
|
| 26 |
+
|
| 27 |
+
2. *Row and Column Sums:* The entries in each row and each column sum to the unit of $A$:
|
| 28 |
+
$$\sum_{j=1}^n u_{ij} = 1_A \quad \text{for all } i=1,\dots,n,$$
|
| 29 |
+
$$\sum_{i=1}^n u_{ij} = 1_A \quad \text{for all } j=1,\dots,n.$$
|
| 30 |
+
"""
|
| 31 |
+
)
|
| 32 |
+
return
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
@app.cell(hide_code=True)
|
| 36 |
+
def _(mo):
|
| 37 |
+
mo.md(
|
| 38 |
+
"""
|
| 39 |
+
We are interested here in the special case where:
|
| 40 |
+
|
| 41 |
+
1. the algebra $A$ is finite dimensional: $A = \mathcal M_d(\mathbb C)$
|
| 42 |
+
2. the projections $u_{ij}$ have *unit rank* (we call $u$ *flat*); in particular $d=n$.
|
| 43 |
+
"""
|
| 44 |
+
)
|
| 45 |
+
return
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
@app.cell
|
| 49 |
+
def _(mo):
|
| 50 |
+
mo.md(
|
| 51 |
+
"""
|
| 52 |
+
## An alogrithm for generating random flat quantum permutation matrices
|
| 53 |
+
##
|
| 54 |
+
"""
|
| 55 |
+
)
|
| 56 |
+
return
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
@app.cell
|
| 60 |
+
def _(mo):
|
| 61 |
+
mo.md(
|
| 62 |
+
r"""
|
| 63 |
+
We propose the following very simple algorithm for generating quantum permutation matrices, based on normalizing the rows and the columns of a matrix of unit rank projections. The alternating normalization of rows and columns is inspired by the **Sinkhorn algorithm** for producing random bistochastic matrices.
|
| 64 |
+
|
| 65 |
+
1. Start from a random matrix: $u_{ij}$ is the orthogonal projection on a random gaussian vector
|
| 66 |
+
2. While the error is larger than some predefined constant and the maximal number of steps has not been attained:
|
| 67 |
+
3. Normalize each row of $u$
|
| 68 |
+
4. Normalize each column of $u$
|
| 69 |
+
5. End-while
|
| 70 |
+
6. Output the matrix $u$
|
| 71 |
+
"""
|
| 72 |
+
)
|
| 73 |
+
return
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
@app.cell
|
| 77 |
+
def _(mo):
|
| 78 |
+
mo.md(
|
| 79 |
+
r"""
|
| 80 |
+
The row (respectively the column) normalization procedures are performed as follows. Collect all the vectors appearing on the $i$-th row of $u$ in a matrix $R_i$. Replace $R_i$ by $\tilde R_i$, the *closest unitary matrix* to $R_i$. This matrix can be obtained from the *singular value decomposition* of $R_i$:
|
| 81 |
+
$$\text{ if } R_i = V_i \Delta_i W_i^*, \, \text{ then }\, \tilde R_i = V_i W_i^*.$$
|
| 82 |
+
"""
|
| 83 |
+
)
|
| 84 |
+
return
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
@app.cell
|
| 88 |
+
def _(mo):
|
| 89 |
+
mo.md(
|
| 90 |
+
"""
|
| 91 |
+
## Implementation
|
| 92 |
+
##
|
| 93 |
+
"""
|
| 94 |
+
)
|
| 95 |
+
return
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
@app.cell
|
| 99 |
+
def _(mo):
|
| 100 |
+
eps_slider = mo.ui.slider(0, 10, value=6)
|
| 101 |
+
max_iter_slider = mo.ui.slider(1, 10000, value=2000)
|
| 102 |
+
n_slider = mo.ui.slider(2, 20, step=1, value=4)
|
| 103 |
+
return eps_slider, max_iter_slider, n_slider
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
@app.cell
|
| 107 |
+
def _(eps_slider, mo):
|
| 108 |
+
mo.md(f"-lg(Error tolerance): {eps_slider} \t error_tolerance = 1e-{eps_slider.value}")
|
| 109 |
+
return
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
@app.cell
|
| 113 |
+
def _(max_iter_slider, mo):
|
| 114 |
+
mo.md(f"Max iterations: {max_iter_slider} \t max_iter = {max_iter_slider.value}")
|
| 115 |
+
return
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
@app.cell
|
| 119 |
+
def _(mo, n_slider):
|
| 120 |
+
mo.md(f"Matrix dimension: {n_slider} \t n = {n_slider.value}")
|
| 121 |
+
return
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
@app.cell
|
| 125 |
+
def _(mo):
|
| 126 |
+
button = mo.ui.run_button(label="Randomize!")
|
| 127 |
+
button
|
| 128 |
+
return (button,)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
@app.cell
|
| 132 |
+
def _(errors, plt, scalar_products):
|
| 133 |
+
# Create a figure with two subplots side by side
|
| 134 |
+
fig, axs = plt.subplots(1, 2, figsize=(12, 5))
|
| 135 |
+
|
| 136 |
+
# Plot the errors on a log scale in the first subplot
|
| 137 |
+
axs[0].semilogy(errors)
|
| 138 |
+
axs[0].set_xlabel('Iteration')
|
| 139 |
+
axs[0].set_ylabel('Error (log scale)')
|
| 140 |
+
axs[0].set_title('Error Convergence')
|
| 141 |
+
axs[0].grid(True)
|
| 142 |
+
|
| 143 |
+
# Plot the histogram in the second subplot
|
| 144 |
+
axs[1].hist(scalar_products, bins=30, edgecolor='black')
|
| 145 |
+
axs[1].set_xlabel('Absolute Values Squared of Scalar Products')
|
| 146 |
+
axs[1].set_ylabel('Frequency')
|
| 147 |
+
axs[1].set_title('Histogram of Absolute Values Squared of Scalar Products')
|
| 148 |
+
axs[1].grid(True)
|
| 149 |
+
|
| 150 |
+
# Adjust layout to prevent overlap
|
| 151 |
+
plt.tight_layout()
|
| 152 |
+
plt.gca()
|
| 153 |
+
return axs, fig
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
@app.cell
|
| 157 |
+
def _(mo):
|
| 158 |
+
mo.md(r"""Note that for $n=2,3$ the histogram of scalar product shows only 0's and 1's: the vectors are either colinear or orthogonal. In other words, the elements $u_{ij}$ **commute**. For $n \geq 4$ this is no longer the case: the scalar product between vectors can take arbitrary values.""")
|
| 159 |
+
return
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
@app.cell
|
| 163 |
+
def _(mo):
|
| 164 |
+
mo.md(
|
| 165 |
+
r"""
|
| 166 |
+
## Open questions
|
| 167 |
+
##
|
| 168 |
+
|
| 169 |
+
1. Prove the convergence of the algorithm for generic initializations.
|
| 170 |
+
2. Find the speed of convergence for arbitrary $n$
|
| 171 |
+
3. What is the distribution of the scalar products for (large / given) $n$? How about the maximal norm of a commutator $[u_{ij}, u_{kl}]$?
|
| 172 |
+
"""
|
| 173 |
+
)
|
| 174 |
+
return
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
@app.cell
|
| 178 |
+
def _(mo):
|
| 179 |
+
mo.md(
|
| 180 |
+
r"""
|
| 181 |
+
## References
|
| 182 |
+
##
|
| 183 |
+
|
| 184 |
+
1. S. Wang, “Quantum symmetry groups of finite spaces,” _Communications in mathematical physics_, vol. 195, no. 1, pp. 195–211, 1998.
|
| 185 |
+
2. T. Banica, J. Bichon, and B. Collins, “Quantum permutation groups: a survey,” _Banach Center Publications_, vol. 78, no. 1, pp. 13–34, 2007.
|
| 186 |
+
3. T. Banica, I. Nechita, "Flat matrix models for quantum permutation groups," _Adv. Appl. Math._ 83, 24-46 (2017).
|
| 187 |
+
"""
|
| 188 |
+
)
|
| 189 |
+
return
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
@app.cell
|
| 193 |
+
def _(np):
|
| 194 |
+
def generate_random_complex_gaussian_matrix(n):
|
| 195 |
+
matrix = np.empty((n, n, n), dtype=np.complex128)
|
| 196 |
+
for i in range(n):
|
| 197 |
+
for j in range(n):
|
| 198 |
+
real_part = np.random.normal(size=n)
|
| 199 |
+
imag_part = np.random.normal(size=n)
|
| 200 |
+
matrix[i, j] = (real_part + 1j * imag_part) / np.sqrt(2)
|
| 201 |
+
return matrix
|
| 202 |
+
|
| 203 |
+
def orthonormalize_vectors_svd(vectors):
|
| 204 |
+
u, _, v = np.linalg.svd(vectors)
|
| 205 |
+
return u @ v
|
| 206 |
+
|
| 207 |
+
def error_QPM(u):
|
| 208 |
+
err = -1;
|
| 209 |
+
|
| 210 |
+
for i in range(u.shape[0]):
|
| 211 |
+
slice = u[i, :, :]
|
| 212 |
+
err = max(err, np.linalg.norm(slice @ slice.conj().T - np.eye(slice.shape[0])))
|
| 213 |
+
slice = u[:, i, :]
|
| 214 |
+
err = max(err, np.linalg.norm(slice @ slice.conj().T - np.eye(slice.shape[0])))
|
| 215 |
+
|
| 216 |
+
return err
|
| 217 |
+
|
| 218 |
+
def scalar_products_QPM(u):
|
| 219 |
+
# Calculate the absolute values squared of the scalar products of the vectors in the matrix u
|
| 220 |
+
scalar_products = []
|
| 221 |
+
for i in range(u.shape[0]):
|
| 222 |
+
for j in range(1, u.shape[0]):
|
| 223 |
+
for k in range(1, u.shape[0]):
|
| 224 |
+
for l in range(1, u.shape[0]):
|
| 225 |
+
scalar_product = np.abs(np.dot(u[i,j,:], u[k,l,:].conj()))**2
|
| 226 |
+
scalar_products.append(scalar_product)
|
| 227 |
+
|
| 228 |
+
return scalar_products
|
| 229 |
+
return (
|
| 230 |
+
error_QPM,
|
| 231 |
+
generate_random_complex_gaussian_matrix,
|
| 232 |
+
orthonormalize_vectors_svd,
|
| 233 |
+
scalar_products_QPM,
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
@app.cell
|
| 238 |
+
def _():
|
| 239 |
+
import marimo as mo
|
| 240 |
+
import numpy as np
|
| 241 |
+
import matplotlib.pyplot as plt
|
| 242 |
+
return mo, np, plt
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
@app.cell
|
| 246 |
+
def _(
|
| 247 |
+
button,
|
| 248 |
+
eps_slider,
|
| 249 |
+
error_QPM,
|
| 250 |
+
generate_random_complex_gaussian_matrix,
|
| 251 |
+
max_iter_slider,
|
| 252 |
+
n_slider,
|
| 253 |
+
orthonormalize_vectors_svd,
|
| 254 |
+
scalar_products_QPM,
|
| 255 |
+
):
|
| 256 |
+
button
|
| 257 |
+
|
| 258 |
+
u = generate_random_complex_gaussian_matrix(n_slider.value)
|
| 259 |
+
|
| 260 |
+
error_tolerance = 10**(-eps_slider.value)
|
| 261 |
+
max_iter = max_iter_slider.value
|
| 262 |
+
|
| 263 |
+
iter = 0
|
| 264 |
+
error = error_QPM(u)
|
| 265 |
+
errors = [error] # Initialize a list to store errors
|
| 266 |
+
scalar_products = scalar_products_QPM(u) # Initialize the scalar product list
|
| 267 |
+
|
| 268 |
+
while error > error_tolerance and iter < max_iter:
|
| 269 |
+
|
| 270 |
+
# orthonormalize rows
|
| 271 |
+
for i in range(n_slider.value):
|
| 272 |
+
u[i, :, :] = orthonormalize_vectors_svd(u[i, :, :])
|
| 273 |
+
|
| 274 |
+
# orthonormalize columns
|
| 275 |
+
for j in range(n_slider.value):
|
| 276 |
+
u[:, j, :] = orthonormalize_vectors_svd(u[:, j, :])
|
| 277 |
+
|
| 278 |
+
error = error_QPM(u)
|
| 279 |
+
errors.append(error) # Append the current error to the list
|
| 280 |
+
|
| 281 |
+
if iter % 10 == 0:
|
| 282 |
+
scalar_products = scalar_products_QPM(u) # Update scalar prodcuts
|
| 283 |
+
iter += 1
|
| 284 |
+
return (
|
| 285 |
+
error,
|
| 286 |
+
error_tolerance,
|
| 287 |
+
errors,
|
| 288 |
+
i,
|
| 289 |
+
iter,
|
| 290 |
+
j,
|
| 291 |
+
max_iter,
|
| 292 |
+
scalar_products,
|
| 293 |
+
u,
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
@app.cell
|
| 298 |
+
def _():
|
| 299 |
+
return
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
if __name__ == "__main__":
|
| 303 |
+
app.run()
|