emanuelaboros's picture
lets highlight some entiteis
5436b2b
raw
history blame
1.83 kB
import gradio as gr
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
# Define the model name
MODEL_NAME = "impresso-project/ner-stacked-bert-multilingual"
# Load the tokenizer and model using the pipeline
ner_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
ner_pipeline = pipeline(
"generic-ner",
model=MODEL_NAME,
tokenizer=ner_tokenizer,
trust_remote_code=True,
device="cpu",
)
# Function to process the sentence and extract entities
def extract_entities(sentence):
results = ner_pipeline(sentence)
entities_with_confidences = []
# Extract and format the entities for highlighting
for entity in results:
entities_with_confidences.append(
(
entity["word"],
entity["start"],
entity["end"],
f"{entity['entity']} ({entity['score']:.2f}%)",
)
)
return {"text": sentence, "entities": entities_with_confidences}
# Create Gradio interface
def ner_app_interface():
input_sentence = gr.Textbox(
lines=5, label="Input Sentence", placeholder="Enter a sentence for NER..."
)
output_entities = gr.HighlightedText(label="Extracted Entities")
# Interface definition
interface = gr.Interface(
fn=extract_entities,
inputs=input_sentence,
outputs=output_entities,
title="Named Entity Recognition",
description="Enter a sentence to extract named entities using the NER model from the Impresso project.",
examples=[
[
"In the year 1789, King Louis XVI, ruler of France, convened the Estates-General at the Palace of Versailles."
]
],
)
interface.launch()
# Run the app
if __name__ == "__main__":
ner_app_interface()