Commit
·
5436b2b
1
Parent(s):
b5d1f19
lets highlight some entiteis
Browse files
app.py
CHANGED
@@ -7,34 +7,40 @@ MODEL_NAME = "impresso-project/ner-stacked-bert-multilingual"
|
|
7 |
# Load the tokenizer and model using the pipeline
|
8 |
ner_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
|
10 |
-
ner_pipeline = pipeline(
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
for entity in entities:
|
19 |
-
entity_info = f"Entity: {entity['entity']} | Confidence: {entity['score']:.2f}% | Text: {entity['word'].strip()} | Start: {entity['start']} | End: {entity['end']}"
|
20 |
-
entity_details.append(entity_info)
|
21 |
-
return "\n".join(entity_details)
|
22 |
|
23 |
# Function to process the sentence and extract entities
|
24 |
def extract_entities(sentence):
|
25 |
results = ner_pipeline(sentence)
|
26 |
-
|
27 |
-
|
28 |
-
# Extract and format the entities
|
29 |
-
for
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Create Gradio interface
|
35 |
def ner_app_interface():
|
36 |
-
input_sentence = gr.Textbox(
|
37 |
-
|
|
|
|
|
38 |
|
39 |
# Interface definition
|
40 |
interface = gr.Interface(
|
@@ -42,12 +48,17 @@ def ner_app_interface():
|
|
42 |
inputs=input_sentence,
|
43 |
outputs=output_entities,
|
44 |
title="Named Entity Recognition",
|
45 |
-
description="Enter a sentence to extract named entities using the NER model from the Impresso project."
|
|
|
|
|
|
|
|
|
|
|
46 |
)
|
47 |
-
|
48 |
interface.launch()
|
49 |
|
|
|
50 |
# Run the app
|
51 |
if __name__ == "__main__":
|
52 |
ner_app_interface()
|
53 |
-
|
|
|
7 |
# Load the tokenizer and model using the pipeline
|
8 |
ner_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
|
10 |
+
ner_pipeline = pipeline(
|
11 |
+
"generic-ner",
|
12 |
+
model=MODEL_NAME,
|
13 |
+
tokenizer=ner_tokenizer,
|
14 |
+
trust_remote_code=True,
|
15 |
+
device="cpu",
|
16 |
+
)
|
17 |
+
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Function to process the sentence and extract entities
|
20 |
def extract_entities(sentence):
|
21 |
results = ner_pipeline(sentence)
|
22 |
+
entities_with_confidences = []
|
23 |
+
|
24 |
+
# Extract and format the entities for highlighting
|
25 |
+
for entity in results:
|
26 |
+
entities_with_confidences.append(
|
27 |
+
(
|
28 |
+
entity["word"],
|
29 |
+
entity["start"],
|
30 |
+
entity["end"],
|
31 |
+
f"{entity['entity']} ({entity['score']:.2f}%)",
|
32 |
+
)
|
33 |
+
)
|
34 |
+
|
35 |
+
return {"text": sentence, "entities": entities_with_confidences}
|
36 |
+
|
37 |
|
38 |
# Create Gradio interface
|
39 |
def ner_app_interface():
|
40 |
+
input_sentence = gr.Textbox(
|
41 |
+
lines=5, label="Input Sentence", placeholder="Enter a sentence for NER..."
|
42 |
+
)
|
43 |
+
output_entities = gr.HighlightedText(label="Extracted Entities")
|
44 |
|
45 |
# Interface definition
|
46 |
interface = gr.Interface(
|
|
|
48 |
inputs=input_sentence,
|
49 |
outputs=output_entities,
|
50 |
title="Named Entity Recognition",
|
51 |
+
description="Enter a sentence to extract named entities using the NER model from the Impresso project.",
|
52 |
+
examples=[
|
53 |
+
[
|
54 |
+
"In the year 1789, King Louis XVI, ruler of France, convened the Estates-General at the Palace of Versailles."
|
55 |
+
]
|
56 |
+
],
|
57 |
)
|
58 |
+
|
59 |
interface.launch()
|
60 |
|
61 |
+
|
62 |
# Run the app
|
63 |
if __name__ == "__main__":
|
64 |
ner_app_interface()
|
|