File size: 4,969 Bytes
d5d2a07 c619232 d5d2a07 5436b2b d5d2a07 9df3a2f 7e788d5 9df3a2f 7e788d5 9df3a2f 7e788d5 9df3a2f 7e788d5 9df3a2f dd1b5ba 49dd9a6 53e96e8 dd1b5ba bf5bc24 5b5c00d 49dd9a6 53e96e8 dd1b5ba 2dac3ae 53e96e8 49dd9a6 9df3a2f 49dd9a6 d5d2a07 5436b2b dd1b5ba 464c568 49dd9a6 5436b2b d5d2a07 5436b2b a836d61 5436b2b 9df3a2f d5d2a07 5436b2b 464c568 a836d61 464c568 ac886a9 d5d2a07 5436b2b ac886a9 d5d2a07 5436b2b d5d2a07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import gradio as gr
from transformers import pipeline, AutoTokenizer
# Define the model name
MODEL_NAME = "impresso-project/ner-stacked-bert-multilingual"
# Load the tokenizer and model using the pipeline
ner_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
ner_pipeline = pipeline(
"generic-ner",
model=MODEL_NAME,
tokenizer=ner_tokenizer,
trust_remote_code=True,
device="cpu",
)
def format_entities_as_html(entities):
excluded_keys = {"start", "end", "index", "word"} # Keys to exclude from the output
html_output = "<div>"
for entity in entities:
html_output += (
"<div style='margin-bottom: 10px;'>" # Each entity in a separate div
)
# Dynamically add all fields except the excluded ones
for key, value in entity.items():
if key not in excluded_keys:
if isinstance(value, float): # Format score if it's a float
html_output += (
f"<strong>{key.capitalize()}:</strong> {value:.2f}<br>"
)
else:
html_output += f"<strong>{key.capitalize()}:</strong> {value}<br>"
html_output += "</div>"
html_output += "</div>"
return html_output
# Helper function to align entities correctly and debug tokenization
def prepare_entities_for_highlight(text, results):
entities = []
seen_spans = set() # Track the spans we have already added to avoid overlaps
# Print debug info about tokenization
print(f"Original text: {text}")
print("Results:", results)
# it should look like:
# [{'entity': 'org.ent.pressagency.Reuters', 'score': np.float32(98.47), 'index': 78, 'word': 'Reuters', 'start': 440, 'end': 447}]
for category, entity_list in results.items():
for entity in entity_list:
entity_span = (entity["start"], entity["end"])
# Only add non-overlapping entities
if entity_span not in seen_spans:
seen_spans.add(entity_span)
entity_text = text[
entity["start"] : entity["end"]
].strip() # Ensure we're working with the correct portion of the text
entity["text"] = entity_text
entity.pop("word")
print(f"Entity text: {entity}")
entities.append(entity)
# Sort entities by their start position
entities = sorted(entities, key=lambda x: x["start"])
return format_entities_as_html(entities)
# Function to process the sentence and extract entities
def extract_entities(sentence):
results = ner_pipeline(sentence)
# Debugging the result format
print(f"NER results: {results}")
# Format the results for HighlightedText
return prepare_entities_for_highlight(sentence, results)
# Create Gradio interface
def ner_app_interface():
input_sentence = gr.Textbox(
lines=5, label="Input Sentence", placeholder="Enter a sentence for NER:"
)
output_entities = gr.HTML(label="Extracted Entities")
# Interface definition
interface = gr.Interface(
fn=extract_entities,
inputs=input_sentence,
outputs=output_entities,
title="Named Entity Recognition",
description="Enter a sentence to extract named entities using the NER model from the Impresso project.",
examples=[
[
"Des chercheurs de l'Université de Cambridge ont développé une nouvelle technique de calcul quantique qui promet d'augmenter exponentiellement les vitesses de calcul."
],
[
"Le rapport complet sur ces découvertes a été publié dans la prestigieuse revue 'Nature Physics'. (Reuters)"
],
["In the year 1789, the Estates-General was convened in France."],
[
"The event was held at the Palace of Versailles, a symbol of French monarchy."
],
[
"At Versailles, Marie Antoinette, the Queen of France, was involved in discussions."
],
[
"Maximilien Robespierre, a leading member of the National Assembly, also participated."
],
[
"Jean-Jacques Rousseau, the famous philosopher, was a significant figure in the debate."
],
[
"Another important participant was Charles de Talleyrand, the Bishop of Autun."
],
[
"Meanwhile, across the Atlantic, George Washington, the first President of the United States, was shaping policies."
],
[
"Thomas Jefferson, the nation's Secretary of State, played a key role in drafting policies for the new American government."
],
],
live=False,
)
interface.launch(share=True)
# Run the app
if __name__ == "__main__":
ner_app_interface()
|