File size: 2,175 Bytes
d5d2a07
 
 
 
 
 
 
 
 
5436b2b
 
 
 
 
 
 
 
d5d2a07
49dd9a6
 
 
 
 
 
 
ac886a9
 
 
 
 
49dd9a6
 
 
 
 
d5d2a07
 
 
5436b2b
464c568
49dd9a6
5436b2b
d5d2a07
 
 
5436b2b
 
 
d20062f
d5d2a07
 
 
 
 
 
 
5436b2b
464c568
 
 
 
 
ac886a9
d5d2a07
5436b2b
ac886a9
d5d2a07
5436b2b
d5d2a07
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import gradio as gr
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer

# Define the model name
MODEL_NAME = "impresso-project/ner-stacked-bert-multilingual"

# Load the tokenizer and model using the pipeline
ner_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

ner_pipeline = pipeline(
    "generic-ner",
    model=MODEL_NAME,
    tokenizer=ner_tokenizer,
    trust_remote_code=True,
    device="cpu",
)


# Helper function to flatten entities and prepare them for HighlightedText
def prepare_entities_for_highlight(text, results):
    entities = []
    for category, entity_list in results.items():
        for entity in entity_list:
            # Appending each entity's word, start and end for highlighting, including the entity label and score
            entities.append(
                {
                    "start": entity["start"],
                    "end": entity["end"],
                    "label": f"{entity['entity']} ({entity['score']:.2f}%)",
                }
            )

    return {"text": text, "entities": entities}


# Function to process the sentence and extract entities
def extract_entities(sentence):
    results = ner_pipeline(sentence)

    # Format the results for HighlightedText
    return prepare_entities_for_highlight(sentence, results)


# Create Gradio interface
def ner_app_interface():
    input_sentence = gr.Textbox(
        lines=5, label="Input Sentence", placeholder="Enter a sentence for NER..."
    )
    output_entities = gr.HighlightedText(label="Extracted Entities")

    # Interface definition
    interface = gr.Interface(
        fn=extract_entities,
        inputs=input_sentence,
        outputs=output_entities,
        title="Named Entity Recognition",
        description="Enter a sentence to extract named entities using the NER model from the Impresso project.",
        examples=[
            [
                "In the year 1789, King Louis XVI, ruler of France, convened the Estates-General at the Palace of Versailles."
            ]
        ],
        live=False,
    )

    interface.launch(share=True)


# Run the app
if __name__ == "__main__":
    ner_app_interface()