Spaces:
Runtime error
Runtime error
from speechbrain.pretrained.interfaces import foreign_class | |
import gradio as gr | |
import os | |
import warnings | |
warnings.filterwarnings("ignore") | |
# Loading the speechbrain emotion detection model | |
learner = foreign_class( | |
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", | |
pymodule_file="custom_interface.py", | |
classname="CustomEncoderWav2vec2Classifier" | |
) | |
# Emotion dictionary | |
emotion_dict = { | |
'sad': 'Sad', | |
'hap': 'Happy', | |
'ang': 'Anger', | |
'fea': 'Fear', | |
'sur': 'Surprised', | |
'neu': 'Neutral' | |
} | |
# Function for classification of uploaded files | |
def predict_emotion_upload(audio): | |
out_prob, score, index, text_lab = learner.classify_file(audio.name) | |
return emotion_dict[text_lab[0]] | |
# Function for classification of selected files from the dropdown | |
def predict_emotion_select(filename): | |
file_path = os.path.join('rec', filename) | |
out_prob, score, index, text_lab = learner.classify_file(file_path) | |
return emotion_dict[text_lab[0]] | |
# Function to create an audio player component | |
def create_audio_player(filename): | |
file_path = os.path.join('rec', filename) | |
return file_path | |
# Retrieve a list of audio file names from the 'rec' directory | |
audio_files = os.listdir('rec') | |
audio_files_dropdown = gr.inputs.Dropdown(choices=audio_files, label="Select Audio File") | |
# Define Gradio interface components for both tabs | |
with gr.Blocks() as demo: | |
gr.Markdown("## ML Speech Emotion Detection") | |
gr.Markdown("Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset.") | |
with gr.Tabs(): | |
with gr.TabItem("Upload Audio"): | |
with gr.Group(): | |
audio_upload = gr.Audio(label="Upload Audio", type="file") | |
submit_btn_1 = gr.Button("Classify Uploaded Audio") | |
audio_player_1 = gr.Audio(label="Uploaded Audio Player", interactive=True) | |
output_text_1 = gr.Textbox(label="Prediction") | |
submit_btn_1.click(predict_emotion_upload, inputs=audio_upload, outputs=[output_text_1, audio_player_1]) | |
with gr.TabItem("Select from List"): | |
with gr.Group(): | |
submit_btn_2 = gr.Button("Classify Selected Audio") | |
audio_player_2 = gr.Audio(label="Selected Audio Player", interactive=True) | |
output_text_2 = gr.Textbox(label="Prediction") | |
audio_files_dropdown.change(create_audio_player, inputs=audio_files_dropdown, outputs=audio_player_2) | |
submit_btn_2.click(predict_emotion_select, inputs=audio_files_dropdown, outputs=output_text_2) | |
demo.launch() |