from speechbrain.pretrained.interfaces import foreign_class import gradio as gr import os import warnings warnings.filterwarnings("ignore") # Loading the speechbrain emotion detection model learner = foreign_class( source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier" ) # Emotion dictionary emotion_dict = { 'sad': 'Sad', 'hap': 'Happy', 'ang': 'Anger', 'fea': 'Fear', 'sur': 'Surprised', 'neu': 'Neutral' } # Function for classification of uploaded files def predict_emotion_upload(audio): out_prob, score, index, text_lab = learner.classify_file(audio.name) return emotion_dict[text_lab[0]] # Function for classification of selected files from the dropdown def predict_emotion_select(filename): file_path = os.path.join('rec', filename) out_prob, score, index, text_lab = learner.classify_file(file_path) return emotion_dict[text_lab[0]] # Function to create an audio player component def create_audio_player(filename): file_path = os.path.join('rec', filename) return file_path # Retrieve a list of audio file names from the 'rec' directory audio_files = os.listdir('rec') audio_files_dropdown = gr.inputs.Dropdown(choices=audio_files, label="Select Audio File") # Define Gradio interface components for both tabs with gr.Blocks() as demo: gr.Markdown("## ML Speech Emotion Detection") gr.Markdown("Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset.") with gr.Tabs(): with gr.TabItem("Upload Audio"): with gr.Group(): audio_upload = gr.Audio(label="Upload Audio", type="file") submit_btn_1 = gr.Button("Classify Uploaded Audio") audio_player_1 = gr.Audio(label="Uploaded Audio Player", interactive=True) output_text_1 = gr.Textbox(label="Prediction") submit_btn_1.click(predict_emotion_upload, inputs=audio_upload, outputs=[output_text_1, audio_player_1]) with gr.TabItem("Select from List"): with gr.Group(): submit_btn_2 = gr.Button("Classify Selected Audio") audio_player_2 = gr.Audio(label="Selected Audio Player", interactive=True) output_text_2 = gr.Textbox(label="Prediction") audio_files_dropdown.change(create_audio_player, inputs=audio_files_dropdown, outputs=audio_player_2) submit_btn_2.click(predict_emotion_select, inputs=audio_files_dropdown, outputs=output_text_2) demo.launch()