Spaces:
Runtime error
Runtime error
File size: 1,434 Bytes
d8755a6 78fbf94 c9ca9ad 78fbf94 401d010 c9ca9ad 78fbf94 d8755a6 401d010 d8755a6 401d010 d8755a6 401d010 d8755a6 9a533bd d8755a6 c9ca9ad e7fc258 401d010 c9ca9ad e7fc258 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
from speechbrain.pretrained.interfaces import foreign_class
import gradio as gr
import os
import warnings
warnings.filterwarnings("ignore")
# Loading the speechbrain emotion detection model
learner = foreign_class(
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
pymodule_file="custom_interface.py",
classname="CustomEncoderWav2vec2Classifier"
)
# Building prediction function for gradio
emotion_dict = {
'sad': 'Sad',
'hap': 'Happy',
'ang': 'Anger',
'fea': 'Fear',
'sur': 'Surprised',
'neu': 'Neutral'
}
# Assuming emotion_dict and learner are defined elsewhere in your code
# and learner.classify_file is a method that classifies the audio file
def predict_emotion(audio, rec_file):
rec_path = os.path.join("rec", rec_file.name)
# Assuming you want to use the audio file from the 'rec' directory for prediction
out_prob, score, index, text_lab = learner.classify_file(rec_path)
return emotion_dict[text_lab[0]]
# Loading gradio interface
inputs = [
gr.inputs.Audio(label="Input Audio", type="file"),
gr.inputs.File(label="Choose file from rec directory", type="file", default="rec/")
]
outputs = "text"
title = "ML Speech Emotion Detection"
description = "Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset using Gradio."
gr.Interface(fn=predict_emotion, inputs=inputs, outputs=outputs, title=title, description=description).launch() |