immelstorun commited on
Commit
401d010
·
1 Parent(s): c9ca9ad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -41
app.py CHANGED
@@ -1,20 +1,20 @@
1
  from speechbrain.pretrained.interfaces import foreign_class
2
  import gradio as gr
3
  import os
4
- import warnings
5
 
 
6
  warnings.filterwarnings("ignore")
7
 
8
  # Loading the speechbrain emotion detection model
9
  learner = foreign_class(
10
  source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
11
- pymodule_file="custom_interface.py",
12
  classname="CustomEncoderWav2vec2Classifier"
13
  )
14
 
15
- # Emotion dictionary
16
  emotion_dict = {
17
- 'sad': 'Sad',
18
  'hap': 'Happy',
19
  'ang': 'Anger',
20
  'fea': 'Fear',
@@ -22,48 +22,46 @@ emotion_dict = {
22
  'neu': 'Neutral'
23
  }
24
 
25
- # Function for classification of uploaded files
26
- def predict_emotion_upload(audio):
27
  out_prob, score, index, text_lab = learner.classify_file(audio.name)
28
  return emotion_dict[text_lab[0]]
29
 
30
- # Function for classification of selected files from the dropdown
31
- def predict_emotion_select(filename):
32
- file_path = os.path.join('rec', filename)
33
- out_prob, score, index, text_lab = learner.classify_file(file_path)
34
- return emotion_dict[text_lab[0]]
35
-
36
- # Function to create an audio player component
37
- def create_audio_player(filename):
38
- file_path = os.path.join('rec', filename)
39
- return file_path
40
 
41
- # Retrieve a list of audio file names from the 'rec' directory
42
- audio_files = os.listdir('rec')
43
- audio_files_dropdown = gr.inputs.Dropdown(choices=audio_files, label="Select Audio File")
 
 
44
 
45
- # Define Gradio interface components for both tabs
46
- with gr.Blocks() as demo:
47
- gr.Markdown("## ML Speech Emotion Detection")
48
- gr.Markdown("Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset.")
 
49
 
50
- with gr.Tabs():
51
- with gr.TabItem("Upload Audio"):
52
- with gr.Group():
53
- audio_upload = gr.Audio(label="Upload Audio", type="file")
54
- submit_btn_1 = gr.Button("Classify Uploaded Audio")
55
- audio_player_1 = gr.Audio(label="Uploaded Audio Player", interactive=True)
56
- output_text_1 = gr.Textbox(label="Prediction")
57
-
58
- submit_btn_1.click(predict_emotion_upload, inputs=audio_upload, outputs=[output_text_1, audio_player_1])
59
-
60
- with gr.TabItem("Select from List"):
61
- with gr.Group():
62
- submit_btn_2 = gr.Button("Classify Selected Audio")
63
- audio_player_2 = gr.Audio(label="Selected Audio Player", interactive=True)
64
- output_text_2 = gr.Textbox(label="Prediction")
65
 
66
- audio_files_dropdown.change(create_audio_player, inputs=audio_files_dropdown, outputs=audio_player_2)
67
- submit_btn_2.click(predict_emotion_select, inputs=audio_files_dropdown, outputs=output_text_2)
 
 
 
 
 
 
 
 
68
 
69
- demo.launch()
 
 
1
  from speechbrain.pretrained.interfaces import foreign_class
2
  import gradio as gr
3
  import os
 
4
 
5
+ import warnings
6
  warnings.filterwarnings("ignore")
7
 
8
  # Loading the speechbrain emotion detection model
9
  learner = foreign_class(
10
  source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
11
+ pymodule_file="custom_interface.py",
12
  classname="CustomEncoderWav2vec2Classifier"
13
  )
14
 
15
+ # Building prediction function for gradio
16
  emotion_dict = {
17
+ 'sad': 'Sad',
18
  'hap': 'Happy',
19
  'ang': 'Anger',
20
  'fea': 'Fear',
 
22
  'neu': 'Neutral'
23
  }
24
 
25
+ def predict_emotion(audio):
 
26
  out_prob, score, index, text_lab = learner.classify_file(audio.name)
27
  return emotion_dict[text_lab[0]]
28
 
29
+ def predict_emotion_from_file(file_path):
30
+ audio = gr.Audio(file_path=file_path, source="upload", type="filepath")
31
+ return predict_emotion(audio)
 
 
 
 
 
 
 
32
 
33
+ # Define the Gradio interface with the first tab for uploading an audio file
34
+ inputs = gr.inputs.Audio(label="Input Audio", type="file")
35
+ outputs = "text"
36
+ title = "ML Speech Emotion Detection"
37
+ description = "Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset using Gradio."
38
 
39
+ # Define the second tab for selecting an audio file from the dropdown
40
+ rec_folder = "rec"
41
+ audio_files = [f for f in os.listdir(rec_folder) if f.endswith(('.wav', '.mp3'))]
42
+ audio_files = [os.path.join(rec_folder, f) for f in audio_files]
43
+ file_dropdown = gr.inputs.Dropdown(label="Select Preloaded Audio File", choices=audio_files)
44
 
45
+ # Create the Gradio interface with both tabs
46
+ iface = gr.Interface(
47
+ fn=predict_emotion,
48
+ inputs=inputs,
49
+ outputs=outputs,
50
+ title=title,
51
+ description=description,
52
+ tab_name="Upload Audio"
53
+ )
 
 
 
 
 
 
54
 
55
+ # Add the second tab to the interface
56
+ iface.add_tab(
57
+ "Select Preloaded Audio",
58
+ gr.Interface(
59
+ fn=predict_emotion_from_file,
60
+ inputs=file_dropdown,
61
+ outputs=outputs,
62
+ tab_name="Select Preloaded Audio"
63
+ )
64
+ )
65
 
66
+ # Launch the Gradio app
67
+ iface.launch()