File size: 1,587 Bytes
a87a2e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f07fb4
a87a2e7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from speechbrain.pretrained.interfaces import foreign_class
import gradio as gr
import os
import warnings
warnings.filterwarnings("ignore")

# Function to get the list of audio files in the 'rec/' directory
def get_audio_files_list(directory="rec"):
    try:
        return [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
    except FileNotFoundError:
        print("The 'rec' directory does not exist. Please make sure it is the correct path.")
        return []

# Loading the speechbrain emotion detection model
learner = foreign_class(
    source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
    pymodule_file="custom_interface.py", 
    classname="CustomEncoderWav2vec2Classifier"
)

# Building prediction function for Gradio
emotion_dict = {
    'sad': 'Sad', 
    'hap': 'Happy',
    'ang': 'Anger',
    'fea': 'Fear',
    'sur': 'Surprised',
    'neu': 'Neutral'
}

def predict_emotion(selected_audio):
    file_path = os.path.join("rec", selected_audio)
    out_prob, score, index, text_lab = learner.classify_file(file_path)
    return emotion_dict[text_lab[0]]

# Get the list of audio files for the dropdown
audio_files_list = get_audio_files_list()

# Loading Gradio interface
inputs = gr.Dropdown(label="Select Audio", choices=audio_files_list)

outputs = "text"
title = "ML Speech Emotion Detection"
description = "Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset using Gradio."

interface = gr.Interface(fn=predict_emotion, inputs=inputs, outputs=outputs, title=title, description=description)
interface.launch()