seikin_alexey commited on
Commit
8f07fb4
·
1 Parent(s): 08c021b
Files changed (2) hide show
  1. app2.py +8 -0
  2. app3.py +0 -55
app2.py CHANGED
@@ -37,9 +37,17 @@ def predict_emotion(selected_audio):
37
  # Get the list of audio files for the dropdown
38
  audio_files_list = get_audio_files_list()
39
 
 
 
 
 
 
 
40
  # Loading Gradio interface
41
  inputs = gr.Dropdown(label="Select Audio", choices=audio_files_list)
42
  audio_ui=gr.Audio()
 
 
43
  outputs = "text"
44
  title = "ML Speech Emotion Detection"
45
  description = "Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset using Gradio."
 
37
  # Get the list of audio files for the dropdown
38
  audio_files_list = get_audio_files_list()
39
 
40
+ def return_audio_clip(audio_text):
41
+ post_file_name = audio_text.lower() + '.wav'
42
+ filepath = os.path.join("pre_recoreded",post_file_name)
43
+ return filepath
44
+
45
+
46
  # Loading Gradio interface
47
  inputs = gr.Dropdown(label="Select Audio", choices=audio_files_list)
48
  audio_ui=gr.Audio()
49
+ inputs.change(return_audio_clip,inputs,audio_ui)
50
+
51
  outputs = "text"
52
  title = "ML Speech Emotion Detection"
53
  description = "Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset using Gradio."
app3.py CHANGED
@@ -1,55 +0,0 @@
1
- import gradio as gr
2
- from speechbrain.pretrained.interfaces import foreign_class
3
- import os
4
-
5
- # Function to get the list of audio files in the 'rec/' directory
6
- def get_audio_files_list(directory="rec"):
7
- try:
8
- return [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
9
- except FileNotFoundError:
10
- print("The 'rec' directory does not exist. Please make sure it is the correct path.")
11
- return []
12
-
13
- # Loading the speechbrain emotion detection model
14
- learner = foreign_class(
15
- source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
16
- pymodule_file="custom_interface.py",
17
- classname="CustomEncoderWav2vec2Classifier"
18
- )
19
-
20
- # Building prediction function for Gradio
21
- emotion_dict = {
22
- 'sad': 'Sad',
23
- 'hap': 'Happy',
24
- 'ang': 'Anger',
25
- 'fea': 'Fear',
26
- 'sur': 'Surprised',
27
- 'neu': 'Neutral'
28
- }
29
-
30
- def selected_audio(audio_file):
31
- if audio_file is None:
32
- return None, "Please select an audio file."
33
- file_path = os.path.join("rec", audio_file)
34
- audio_data = gr.Audio(file=file_path)
35
- out_prob, score, index, text_lab = learner.classify_file(file_path)
36
- emotion = emotion_dict[text_lab[0]]
37
- return audio_data, emotion
38
-
39
- # Get the list of audio files for the dropdown
40
- audio_files_list = get_audio_files_list()
41
-
42
- # Define Gradio blocks
43
- with gr.Blocks() as blocks:
44
- gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" +
45
- "Audio Emotion Detection" +
46
- "</h1>")
47
- with gr.Column():
48
- input_audio_dropdown = gr.Dropdown(label="Select Audio", choices=audio_files_list)
49
- audio_ui = gr.Audio()
50
- output_text = gr.Textbox(label="Detected Emotion!")
51
- detect_btn = gr.Button("Detect Emotion")
52
- detect_btn.click(selected_audio, inputs=input_audio_dropdown, outputs=[audio_ui, output_text])
53
-
54
- # Launch the Gradio blocks interface
55
- blocks.launch()