Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,3 @@
|
|
| 1 |
-
"""from fastapi import FastAPI, UploadFile, Form
|
| 2 |
-
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
| 3 |
-
import os
|
| 4 |
-
import shutil
|
| 5 |
-
from PIL import Image
|
| 6 |
-
from transformers import ViltProcessor, ViltForQuestionAnswering
|
| 7 |
-
from gtts import gTTS
|
| 8 |
-
import torch
|
| 9 |
-
import tempfile
|
| 10 |
-
import gradio as gr
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
app = FastAPI()
|
| 15 |
-
|
| 16 |
-
# Load VQA Model
|
| 17 |
-
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
| 18 |
-
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
def answer_question_from_image(image, question):
|
| 22 |
-
if image is None or not question.strip():
|
| 23 |
-
return "Please upload an image and ask a question.", None
|
| 24 |
-
|
| 25 |
-
# Process with model
|
| 26 |
-
inputs = vqa_processor(image, question, return_tensors="pt")
|
| 27 |
-
with torch.no_grad():
|
| 28 |
-
outputs = vqa_model(**inputs)
|
| 29 |
-
predicted_id = outputs.logits.argmax(-1).item()
|
| 30 |
-
answer = vqa_model.config.id2label[predicted_id]
|
| 31 |
-
|
| 32 |
-
# Generate TTS audio
|
| 33 |
-
try:
|
| 34 |
-
tts = gTTS(text=answer)
|
| 35 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
| 36 |
-
tts.save(tmp.name)
|
| 37 |
-
audio_path = tmp.name
|
| 38 |
-
except Exception as e:
|
| 39 |
-
return f"Answer: {answer}\n\n⚠️ Audio generation error: {e}", None
|
| 40 |
-
|
| 41 |
-
return answer, audio_path
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def process_image_question(image: Image.Image, question: str):
|
| 45 |
-
answer, audio_path = answer_question_from_image(image, question)
|
| 46 |
-
return answer, audio_path
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
gui = gr.Interface(
|
| 50 |
-
fn=process_image_question,
|
| 51 |
-
inputs=[
|
| 52 |
-
gr.Image(type="pil", label="Upload Image"),
|
| 53 |
-
gr.Textbox(lines=2, placeholder="Ask a question about the image...", label="Question")
|
| 54 |
-
],
|
| 55 |
-
outputs=[
|
| 56 |
-
gr.Textbox(label="Answer", lines=5),
|
| 57 |
-
gr.Audio(label="Answer (Audio)", type="filepath")
|
| 58 |
-
],
|
| 59 |
-
title="🧠 Image QA with Voice",
|
| 60 |
-
description="Upload an image and ask a question. You'll get a text + spoken answer."
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
app = gr.mount_gradio_app(app, gui, path="/")
|
| 64 |
-
|
| 65 |
-
@app.get("/")
|
| 66 |
-
def home():
|
| 67 |
-
return RedirectResponse(url="/") """
|
| 68 |
from fastapi import FastAPI, UploadFile, Form
|
| 69 |
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
| 70 |
import os
|
|
@@ -72,6 +5,7 @@ import shutil
|
|
| 72 |
from PIL import Image
|
| 73 |
from transformers import ViltProcessor, ViltForQuestionAnswering, pipeline
|
| 74 |
from gtts import gTTS
|
|
|
|
| 75 |
import torch
|
| 76 |
import tempfile
|
| 77 |
import gradio as gr
|
|
@@ -82,42 +16,56 @@ app = FastAPI()
|
|
| 82 |
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
| 83 |
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
| 84 |
|
| 85 |
-
# Load
|
| 86 |
-
|
| 87 |
|
| 88 |
-
def
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
return
|
| 94 |
-
|
| 95 |
-
return
|
| 96 |
|
| 97 |
def answer_question_from_image(image, question):
|
| 98 |
if image is None or not question.strip():
|
| 99 |
return "Please upload an image and ask a question.", None
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
# Generate TTS audio
|
| 112 |
try:
|
| 113 |
-
tts = gTTS(text=
|
| 114 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
| 115 |
tts.save(tmp.name)
|
| 116 |
audio_path = tmp.name
|
| 117 |
except Exception as e:
|
| 118 |
-
return f"Answer: {
|
| 119 |
|
| 120 |
-
return
|
| 121 |
|
| 122 |
def process_image_question(image: Image.Image, question: str):
|
| 123 |
answer, audio_path = answer_question_from_image(image, question)
|
|
@@ -134,11 +82,11 @@ gui = gr.Interface(
|
|
| 134 |
gr.Audio(label="Answer (Audio)", type="filepath")
|
| 135 |
],
|
| 136 |
title="🧠 Image QA with Voice",
|
| 137 |
-
description="Upload an image and ask a question.
|
| 138 |
)
|
| 139 |
|
| 140 |
app = gr.mount_gradio_app(app, gui, path="/")
|
| 141 |
|
| 142 |
@app.get("/")
|
| 143 |
def home():
|
| 144 |
-
return RedirectResponse(url="/")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI, UploadFile, Form
|
| 2 |
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
| 3 |
import os
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
from transformers import ViltProcessor, ViltForQuestionAnswering, pipeline
|
| 7 |
from gtts import gTTS
|
| 8 |
+
import pytesseract
|
| 9 |
import torch
|
| 10 |
import tempfile
|
| 11 |
import gradio as gr
|
|
|
|
| 16 |
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
| 17 |
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
| 18 |
|
| 19 |
+
# Load image captioning model
|
| 20 |
+
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
| 21 |
|
| 22 |
+
def classify_question(question: str):
|
| 23 |
+
question_lower = question.lower()
|
| 24 |
+
if any(word in question_lower for word in ["text", "say", "written", "read"]):
|
| 25 |
+
return "ocr"
|
| 26 |
+
elif any(word in question_lower for word in ["caption", "describe", "what is in the image"]):
|
| 27 |
+
return "caption"
|
| 28 |
+
else:
|
| 29 |
+
return "vqa"
|
| 30 |
|
| 31 |
def answer_question_from_image(image, question):
|
| 32 |
if image is None or not question.strip():
|
| 33 |
return "Please upload an image and ask a question.", None
|
| 34 |
|
| 35 |
+
mode = classify_question(question)
|
| 36 |
+
|
| 37 |
+
if mode == "ocr":
|
| 38 |
+
try:
|
| 39 |
+
text = pytesseract.image_to_string(image)
|
| 40 |
+
answer = text.strip() or "No readable text found."
|
| 41 |
+
except Exception as e:
|
| 42 |
+
answer = f"OCR Error: {e}"
|
| 43 |
+
|
| 44 |
+
elif mode == "caption":
|
| 45 |
+
try:
|
| 46 |
+
answer = captioner(image)[0]['generated_text']
|
| 47 |
+
except Exception as e:
|
| 48 |
+
answer = f"Captioning error: {e}"
|
| 49 |
+
|
| 50 |
+
else:
|
| 51 |
+
try:
|
| 52 |
+
inputs = vqa_processor(image, question, return_tensors="pt")
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
outputs = vqa_model(**inputs)
|
| 55 |
+
predicted_id = outputs.logits.argmax(-1).item()
|
| 56 |
+
answer = vqa_model.config.id2label[predicted_id]
|
| 57 |
+
except Exception as e:
|
| 58 |
+
answer = f"VQA error: {e}"
|
| 59 |
|
|
|
|
| 60 |
try:
|
| 61 |
+
tts = gTTS(text=answer)
|
| 62 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
| 63 |
tts.save(tmp.name)
|
| 64 |
audio_path = tmp.name
|
| 65 |
except Exception as e:
|
| 66 |
+
return f"Answer: {answer}\n\n⚠️ Audio generation error: {e}", None
|
| 67 |
|
| 68 |
+
return answer, audio_path
|
| 69 |
|
| 70 |
def process_image_question(image: Image.Image, question: str):
|
| 71 |
answer, audio_path = answer_question_from_image(image, question)
|
|
|
|
| 82 |
gr.Audio(label="Answer (Audio)", type="filepath")
|
| 83 |
],
|
| 84 |
title="🧠 Image QA with Voice",
|
| 85 |
+
description="Upload an image and ask a question. Works for OCR, captioning, and VQA."
|
| 86 |
)
|
| 87 |
|
| 88 |
app = gr.mount_gradio_app(app, gui, path="/")
|
| 89 |
|
| 90 |
@app.get("/")
|
| 91 |
def home():
|
| 92 |
+
return RedirectResponse(url="/")
|