Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,70 +1,3 @@
|
|
1 |
-
"""from fastapi import FastAPI, UploadFile, Form
|
2 |
-
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
3 |
-
import os
|
4 |
-
import shutil
|
5 |
-
from PIL import Image
|
6 |
-
from transformers import ViltProcessor, ViltForQuestionAnswering
|
7 |
-
from gtts import gTTS
|
8 |
-
import torch
|
9 |
-
import tempfile
|
10 |
-
import gradio as gr
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
app = FastAPI()
|
15 |
-
|
16 |
-
# Load VQA Model
|
17 |
-
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
18 |
-
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
19 |
-
|
20 |
-
|
21 |
-
def answer_question_from_image(image, question):
|
22 |
-
if image is None or not question.strip():
|
23 |
-
return "Please upload an image and ask a question.", None
|
24 |
-
|
25 |
-
# Process with model
|
26 |
-
inputs = vqa_processor(image, question, return_tensors="pt")
|
27 |
-
with torch.no_grad():
|
28 |
-
outputs = vqa_model(**inputs)
|
29 |
-
predicted_id = outputs.logits.argmax(-1).item()
|
30 |
-
answer = vqa_model.config.id2label[predicted_id]
|
31 |
-
|
32 |
-
# Generate TTS audio
|
33 |
-
try:
|
34 |
-
tts = gTTS(text=answer)
|
35 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
36 |
-
tts.save(tmp.name)
|
37 |
-
audio_path = tmp.name
|
38 |
-
except Exception as e:
|
39 |
-
return f"Answer: {answer}\n\n⚠️ Audio generation error: {e}", None
|
40 |
-
|
41 |
-
return answer, audio_path
|
42 |
-
|
43 |
-
|
44 |
-
def process_image_question(image: Image.Image, question: str):
|
45 |
-
answer, audio_path = answer_question_from_image(image, question)
|
46 |
-
return answer, audio_path
|
47 |
-
|
48 |
-
|
49 |
-
gui = gr.Interface(
|
50 |
-
fn=process_image_question,
|
51 |
-
inputs=[
|
52 |
-
gr.Image(type="pil", label="Upload Image"),
|
53 |
-
gr.Textbox(lines=2, placeholder="Ask a question about the image...", label="Question")
|
54 |
-
],
|
55 |
-
outputs=[
|
56 |
-
gr.Textbox(label="Answer", lines=5),
|
57 |
-
gr.Audio(label="Answer (Audio)", type="filepath")
|
58 |
-
],
|
59 |
-
title="🧠 Image QA with Voice",
|
60 |
-
description="Upload an image and ask a question. You'll get a text + spoken answer."
|
61 |
-
)
|
62 |
-
|
63 |
-
app = gr.mount_gradio_app(app, gui, path="/")
|
64 |
-
|
65 |
-
@app.get("/")
|
66 |
-
def home():
|
67 |
-
return RedirectResponse(url="/") """
|
68 |
from fastapi import FastAPI, UploadFile, Form
|
69 |
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
70 |
import os
|
@@ -72,6 +5,7 @@ import shutil
|
|
72 |
from PIL import Image
|
73 |
from transformers import ViltProcessor, ViltForQuestionAnswering, pipeline
|
74 |
from gtts import gTTS
|
|
|
75 |
import torch
|
76 |
import tempfile
|
77 |
import gradio as gr
|
@@ -82,42 +16,56 @@ app = FastAPI()
|
|
82 |
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
83 |
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
84 |
|
85 |
-
# Load
|
86 |
-
|
87 |
|
88 |
-
def
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
return
|
94 |
-
|
95 |
-
return
|
96 |
|
97 |
def answer_question_from_image(image, question):
|
98 |
if image is None or not question.strip():
|
99 |
return "Please upload an image and ask a question.", None
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
# Generate TTS audio
|
112 |
try:
|
113 |
-
tts = gTTS(text=
|
114 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
115 |
tts.save(tmp.name)
|
116 |
audio_path = tmp.name
|
117 |
except Exception as e:
|
118 |
-
return f"Answer: {
|
119 |
|
120 |
-
return
|
121 |
|
122 |
def process_image_question(image: Image.Image, question: str):
|
123 |
answer, audio_path = answer_question_from_image(image, question)
|
@@ -134,11 +82,11 @@ gui = gr.Interface(
|
|
134 |
gr.Audio(label="Answer (Audio)", type="filepath")
|
135 |
],
|
136 |
title="🧠 Image QA with Voice",
|
137 |
-
description="Upload an image and ask a question.
|
138 |
)
|
139 |
|
140 |
app = gr.mount_gradio_app(app, gui, path="/")
|
141 |
|
142 |
@app.get("/")
|
143 |
def home():
|
144 |
-
return RedirectResponse(url="/")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, UploadFile, Form
|
2 |
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
3 |
import os
|
|
|
5 |
from PIL import Image
|
6 |
from transformers import ViltProcessor, ViltForQuestionAnswering, pipeline
|
7 |
from gtts import gTTS
|
8 |
+
import pytesseract
|
9 |
import torch
|
10 |
import tempfile
|
11 |
import gradio as gr
|
|
|
16 |
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
17 |
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
18 |
|
19 |
+
# Load image captioning model
|
20 |
+
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
21 |
|
22 |
+
def classify_question(question: str):
|
23 |
+
question_lower = question.lower()
|
24 |
+
if any(word in question_lower for word in ["text", "say", "written", "read"]):
|
25 |
+
return "ocr"
|
26 |
+
elif any(word in question_lower for word in ["caption", "describe", "what is in the image"]):
|
27 |
+
return "caption"
|
28 |
+
else:
|
29 |
+
return "vqa"
|
30 |
|
31 |
def answer_question_from_image(image, question):
|
32 |
if image is None or not question.strip():
|
33 |
return "Please upload an image and ask a question.", None
|
34 |
|
35 |
+
mode = classify_question(question)
|
36 |
+
|
37 |
+
if mode == "ocr":
|
38 |
+
try:
|
39 |
+
text = pytesseract.image_to_string(image)
|
40 |
+
answer = text.strip() or "No readable text found."
|
41 |
+
except Exception as e:
|
42 |
+
answer = f"OCR Error: {e}"
|
43 |
+
|
44 |
+
elif mode == "caption":
|
45 |
+
try:
|
46 |
+
answer = captioner(image)[0]['generated_text']
|
47 |
+
except Exception as e:
|
48 |
+
answer = f"Captioning error: {e}"
|
49 |
+
|
50 |
+
else:
|
51 |
+
try:
|
52 |
+
inputs = vqa_processor(image, question, return_tensors="pt")
|
53 |
+
with torch.no_grad():
|
54 |
+
outputs = vqa_model(**inputs)
|
55 |
+
predicted_id = outputs.logits.argmax(-1).item()
|
56 |
+
answer = vqa_model.config.id2label[predicted_id]
|
57 |
+
except Exception as e:
|
58 |
+
answer = f"VQA error: {e}"
|
59 |
|
|
|
60 |
try:
|
61 |
+
tts = gTTS(text=answer)
|
62 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
63 |
tts.save(tmp.name)
|
64 |
audio_path = tmp.name
|
65 |
except Exception as e:
|
66 |
+
return f"Answer: {answer}\n\n⚠️ Audio generation error: {e}", None
|
67 |
|
68 |
+
return answer, audio_path
|
69 |
|
70 |
def process_image_question(image: Image.Image, question: str):
|
71 |
answer, audio_path = answer_question_from_image(image, question)
|
|
|
82 |
gr.Audio(label="Answer (Audio)", type="filepath")
|
83 |
],
|
84 |
title="🧠 Image QA with Voice",
|
85 |
+
description="Upload an image and ask a question. Works for OCR, captioning, and VQA."
|
86 |
)
|
87 |
|
88 |
app = gr.mount_gradio_app(app, gui, path="/")
|
89 |
|
90 |
@app.get("/")
|
91 |
def home():
|
92 |
+
return RedirectResponse(url="/")
|