Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -70,7 +70,7 @@ from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
|
70 |
import os
|
71 |
import shutil
|
72 |
from PIL import Image
|
73 |
-
from transformers import ViltProcessor, ViltForQuestionAnswering
|
74 |
from gtts import gTTS
|
75 |
import torch
|
76 |
import tempfile
|
@@ -82,25 +82,42 @@ app = FastAPI()
|
|
82 |
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
83 |
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
def answer_question_from_image(image, question):
|
86 |
if image is None or not question.strip():
|
87 |
return "Please upload an image and ask a question.", None
|
88 |
|
|
|
89 |
inputs = vqa_processor(image, question, return_tensors="pt")
|
90 |
with torch.no_grad():
|
91 |
outputs = vqa_model(**inputs)
|
92 |
predicted_id = outputs.logits.argmax(-1).item()
|
93 |
short_answer = vqa_model.config.id2label[predicted_id]
|
94 |
|
|
|
|
|
|
|
|
|
95 |
try:
|
96 |
-
tts = gTTS(text=
|
97 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
98 |
tts.save(tmp.name)
|
99 |
audio_path = tmp.name
|
100 |
except Exception as e:
|
101 |
-
return f"Answer: {
|
102 |
|
103 |
-
return
|
104 |
|
105 |
def process_image_question(image: Image.Image, question: str):
|
106 |
answer, audio_path = answer_question_from_image(image, question)
|
@@ -117,7 +134,7 @@ gui = gr.Interface(
|
|
117 |
gr.Audio(label="Answer (Audio)", type="filepath")
|
118 |
],
|
119 |
title="🧠 Image QA with Voice",
|
120 |
-
description="Upload an image and ask a question. You'll get
|
121 |
)
|
122 |
|
123 |
app = gr.mount_gradio_app(app, gui, path="/")
|
|
|
70 |
import os
|
71 |
import shutil
|
72 |
from PIL import Image
|
73 |
+
from transformers import ViltProcessor, ViltForQuestionAnswering, pipeline
|
74 |
from gtts import gTTS
|
75 |
import torch
|
76 |
import tempfile
|
|
|
82 |
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
83 |
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
84 |
|
85 |
+
# Load GPT model for rewriting short answers
|
86 |
+
gpt_rewriter = pipeline("text-generation", model="EleutherAI/gpt-neo-1.3B")
|
87 |
+
|
88 |
+
def rewrite_answer(question: str, short_answer: str):
|
89 |
+
prompt = f"Q: {question}\nA: {short_answer}\n\nRespond with a full sentence:"
|
90 |
+
try:
|
91 |
+
result = gpt_rewriter(prompt, max_length=50, do_sample=False)
|
92 |
+
full_sentence = result[0]['generated_text'].split("Respond with a full sentence:")[-1].strip()
|
93 |
+
return full_sentence
|
94 |
+
except Exception as e:
|
95 |
+
return short_answer # fallback
|
96 |
+
|
97 |
def answer_question_from_image(image, question):
|
98 |
if image is None or not question.strip():
|
99 |
return "Please upload an image and ask a question.", None
|
100 |
|
101 |
+
# Process with model
|
102 |
inputs = vqa_processor(image, question, return_tensors="pt")
|
103 |
with torch.no_grad():
|
104 |
outputs = vqa_model(**inputs)
|
105 |
predicted_id = outputs.logits.argmax(-1).item()
|
106 |
short_answer = vqa_model.config.id2label[predicted_id]
|
107 |
|
108 |
+
# Rewrite short answer using GPT
|
109 |
+
full_answer = rewrite_answer(question, short_answer)
|
110 |
+
|
111 |
+
# Generate TTS audio
|
112 |
try:
|
113 |
+
tts = gTTS(text=full_answer)
|
114 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
115 |
tts.save(tmp.name)
|
116 |
audio_path = tmp.name
|
117 |
except Exception as e:
|
118 |
+
return f"Answer: {full_answer}\n\n⚠️ Audio generation error: {e}", None
|
119 |
|
120 |
+
return full_answer, audio_path
|
121 |
|
122 |
def process_image_question(image: Image.Image, question: str):
|
123 |
answer, audio_path = answer_question_from_image(image, question)
|
|
|
134 |
gr.Audio(label="Answer (Audio)", type="filepath")
|
135 |
],
|
136 |
title="🧠 Image QA with Voice",
|
137 |
+
description="Upload an image and ask a question. You'll get a detailed text + spoken answer."
|
138 |
)
|
139 |
|
140 |
app = gr.mount_gradio_app(app, gui, path="/")
|