Spaces:
Sleeping
Sleeping
"""from fastapi import FastAPI, UploadFile, File, Form, Request | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.templating import Jinja2Templates | |
import os | |
import tempfile | |
from typing import Optional | |
# Initialize FastAPI | |
app = FastAPI() | |
# CORS Policy: allow everything (because Hugging Face Spaces needs it open) | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Static files and templates | |
app.mount("/static", StaticFiles(directory="static"), name="static") | |
app.mount("/resources", StaticFiles(directory="resources"), name="resources") | |
templates = Jinja2Templates(directory="templates") | |
# --- Serve Frontend --- | |
@app.get("/", response_class=HTMLResponse) | |
async def serve_home(request: Request): | |
return templates.TemplateResponse("HomeS.html", {"request": request}) | |
# --- API Endpoints that frontend needs --- | |
@app.post("/summarize/") | |
async def summarize_document_endpoint(file: UploadFile = File(...), length: str = Form("medium")): | |
try: | |
from app import summarize_api | |
return await summarize_api(file, length) | |
except Exception as e: | |
return JSONResponse({"error": f"Summarization failed: {str(e)}"}, status_code=500) | |
@app.post("/imagecaption/") | |
async def caption_image_endpoint(file: UploadFile = File(...)): | |
try: | |
from appImage import caption_from_frontend | |
return await caption_from_frontend(file) | |
except Exception as e: | |
return JSONResponse({"error": f"Image captioning failed: {str(e)}"}, status_code=500) | |
# --- Serve generated audio/pdf files --- | |
@app.get("/files/{filename}") | |
async def serve_file(filename: str): | |
path = os.path.join(tempfile.gettempdir(), filename) | |
if os.path.exists(path): | |
return FileResponse(path) | |
return JSONResponse({"error": "File not found"}, status_code=404) | |
# (Optional) Unified prediction endpoint — Only if you want | |
@app.post("/predict") | |
async def predict( | |
file: UploadFile = File(...), | |
option: str = Form(...), # "Summarize" or "Captioning" | |
length: Optional[str] = Form(None) # Only for Summarize | |
): | |
try: | |
if option == "Summarize": | |
return await summarize_document_endpoint(file, length or "medium") | |
elif option == "Captioning": | |
return await caption_image_endpoint(file) | |
else: | |
return JSONResponse({"error": "Invalid option"}, status_code=400) | |
except Exception as e: | |
return JSONResponse({"error": f"Prediction failed: {str(e)}"}, status_code=500) """ | |
from fastapi import FastAPI, UploadFile, File, Form, Request, HTTPException | |
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.templating import Jinja2Templates | |
from fastapi.middleware.cors import CORSMiddleware | |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoProcessor, AutoModelForCausalLM | |
from PIL import Image | |
import torch | |
import fitz # PyMuPDF | |
import docx | |
import pptx | |
import openpyxl | |
import re | |
import nltk | |
from nltk.tokenize import sent_tokenize | |
from gtts import gTTS | |
from fpdf import FPDF | |
import tempfile | |
import os | |
import shutil | |
import datetime | |
import hashlib | |
import easyocr | |
from typing import Optional | |
# Initialize app | |
app = FastAPI() | |
# CORS Configuration | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Static assets | |
app.mount("/static", StaticFiles(directory="static"), name="static") | |
app.mount("/resources", StaticFiles(directory="resources"), name="resources") | |
# Templates | |
templates = Jinja2Templates(directory="templates") | |
# Initialize models | |
nltk.download('punkt', quiet=True) | |
# Document processing models | |
try: | |
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") | |
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn") | |
model.eval() | |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1) | |
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available()) | |
except Exception as e: | |
print(f"Error loading summarization models: {e}") | |
summarizer = None | |
# Image captioning models | |
try: | |
processor = AutoProcessor.from_pretrained("microsoft/git-large-coco") | |
git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco") | |
git_model.eval() | |
USE_GIT = True | |
except Exception as e: | |
print(f"Error loading GIT model, falling back to ViT: {e}") | |
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning") | |
USE_GIT = False | |
# Helper functions | |
def clean_text(text: str) -> str: | |
text = re.sub(r'\s+', ' ', text) | |
text = re.sub(r'\u2022\s*|\d\.\s+', '', text) | |
text = re.sub(r'\[.*?\]|\(.*?\)', '', text) | |
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE) | |
return text.strip() | |
def extract_text(file_path: str, file_extension: str): | |
try: | |
if file_extension == "pdf": | |
with fitz.open(file_path) as doc: | |
text = "\n".join(page.get_text("text") for page in doc) | |
if len(text.strip()) < 50: | |
images = [page.get_pixmap() for page in doc] | |
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False) | |
images[0].save(temp_img.name) | |
ocr_result = reader.readtext(temp_img.name, detail=0) | |
os.unlink(temp_img.name) | |
text = "\n".join(ocr_result) if ocr_result else text | |
return clean_text(text), "" | |
elif file_extension == "docx": | |
doc = docx.Document(file_path) | |
return clean_text("\n".join(p.text for p in doc.paragraphs)), "" | |
elif file_extension == "pptx": | |
prs = pptx.Presentation(file_path) | |
text = [shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")] | |
return clean_text("\n".join(text)), "" | |
elif file_extension == "xlsx": | |
wb = openpyxl.load_workbook(file_path, read_only=True) | |
text = [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)] | |
return clean_text("\n".join(text)), "" | |
return "", "Unsupported file format" | |
except Exception as e: | |
return "", f"Error reading {file_extension.upper()} file: {str(e)}" | |
def chunk_text(text: str, max_tokens: int = 950): | |
try: | |
sentences = sent_tokenize(text) | |
except: | |
words = text.split() | |
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)] | |
chunks = [] | |
current_chunk = "" | |
for sentence in sentences: | |
token_length = len(tokenizer.encode(current_chunk + " " + sentence)) | |
if token_length <= max_tokens: | |
current_chunk += " " + sentence | |
else: | |
chunks.append(current_chunk.strip()) | |
current_chunk = sentence | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
return chunks | |
def generate_summary(text: str, length: str = "medium") -> str: | |
cache_key = hashlib.md5((text + length).encode()).hexdigest() | |
length_params = { | |
"short": {"max_length": 80, "min_length": 30}, | |
"medium": {"max_length": 200, "min_length": 80}, | |
"long": {"max_length": 300, "min_length": 210} | |
} | |
chunks = chunk_text(text) | |
try: | |
summaries = summarizer( | |
chunks, | |
max_length=length_params[length]["max_length"], | |
min_length=length_params[length]["min_length"], | |
do_sample=False, | |
truncation=True | |
) | |
summary_texts = [s['summary_text'] for s in summaries] | |
except Exception as e: | |
summary_texts = [f"[Error: {str(e)}"] | |
final_summary = " ".join(summary_texts) | |
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip()) | |
return final_summary if len(final_summary) > 25 else "Summary too short" | |
def text_to_speech(text: str): | |
try: | |
tts = gTTS(text) | |
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") | |
tts.save(temp_audio.name) | |
return temp_audio.name | |
except Exception as e: | |
print(f"Error in text-to-speech: {e}") | |
return "" | |
def create_pdf(summary: str, original_filename: str): | |
try: | |
pdf = FPDF() | |
pdf.add_page() | |
pdf.set_font("Arial", 'B', 16) | |
pdf.cell(200, 10, txt="Document Summary", ln=1, align='C') | |
pdf.set_font("Arial", size=12) | |
pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1) | |
pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1) | |
pdf.ln(10) | |
pdf.multi_cell(0, 10, txt=summary) | |
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") | |
pdf.output(temp_pdf.name) | |
return temp_pdf.name | |
except Exception as e: | |
print(f"Error creating PDF: {e}") | |
return "" | |
def generate_caption(image_path: str) -> str: | |
try: | |
if USE_GIT: | |
image = Image.open(image_path).convert("RGB") | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = git_model.generate(**inputs, max_length=50) | |
caption = processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
else: | |
result = captioner(image_path) | |
caption = result[0]['generated_text'] | |
return caption | |
except Exception as e: | |
raise Exception(f"Caption generation failed: {str(e)}") | |
# API Endpoints | |
async def summarize_document(file: UploadFile = File(...), length: str = Form("medium")): | |
valid_types = [ | |
'application/pdf', | |
'application/vnd.openxmlformats-officedocument.wordprocessingml.document', | |
'application/vnd.openxmlformats-officedocument.presentationml.presentation', | |
'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' | |
] | |
if file.content_type not in valid_types: | |
raise HTTPException( | |
status_code=400, | |
detail="Please upload a valid document (PDF, DOCX, PPTX, or XLSX)" | |
) | |
try: | |
# Save temp file | |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp: | |
shutil.copyfileobj(file.file, temp) | |
temp_path = temp.name | |
# Process file | |
text, error = extract_text(temp_path, os.path.splitext(file.filename)[1][1:].lower()) | |
if error: | |
raise HTTPException(status_code=400, detail=error) | |
if not text or len(text.split()) < 30: | |
raise HTTPException(status_code=400, detail="Document too short to summarize") | |
summary = generate_summary(text, length) | |
audio_path = text_to_speech(summary) | |
pdf_path = create_pdf(summary, file.filename) | |
return { | |
"summary": summary, | |
"audio_url": f"/files/{os.path.basename(audio_path)}" if audio_path else None, | |
"pdf_url": f"/files/{os.path.basename(pdf_path)}" if pdf_path else None | |
} | |
except HTTPException: | |
raise | |
except Exception as e: | |
raise HTTPException( | |
status_code=500, | |
detail=f"Summarization failed: {str(e)}" | |
) | |
finally: | |
if 'temp_path' in locals() and os.path.exists(temp_path): | |
os.unlink(temp_path) | |
async def caption_image(file: UploadFile = File(...)): | |
valid_types = ['image/jpeg', 'image/png', 'image/gif', 'image/webp'] | |
if file.content_type not in valid_types: | |
raise HTTPException( | |
status_code=400, | |
detail="Please upload a valid image (JPEG, PNG, GIF, or WEBP)" | |
) | |
try: | |
# Save temp file | |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp: | |
shutil.copyfileobj(file.file, temp) | |
temp_path = temp.name | |
# Generate caption | |
caption = generate_caption(temp_path) | |
# Generate audio | |
audio_path = text_to_speech(caption) | |
return { | |
"answer": caption, | |
"audio": f"/files/{os.path.basename(audio_path)}" if audio_path else None | |
} | |
except HTTPException: | |
raise | |
except Exception as e: | |
raise HTTPException( | |
status_code=500, | |
detail=str(e) | |
) | |
finally: | |
if 'temp_path' in locals() and os.path.exists(temp_path): | |
os.unlink(temp_path) | |
async def serve_file(filename: str): | |
file_path = os.path.join(tempfile.gettempdir(), filename) | |
if os.path.exists(file_path): | |
return FileResponse(file_path) | |
raise HTTPException(status_code=404, detail="File not found") | |
async def serve_home(request: Request): | |
return templates.TemplateResponse("HomeS.html", {"request": request}) | |