Spaces:
Sleeping
Sleeping
File size: 13,269 Bytes
5c4195a 59efe71 8888b75 59efe71 c0e0602 8888b75 59efe71 d0fd428 59efe71 d0fd428 59efe71 8888b75 59efe71 d0fd428 59efe71 c0e0602 59efe71 d0fd428 59efe71 c0e0602 8888b75 d0fd428 8888b75 d0fd428 8888b75 c319660 d0fd428 8888b75 d0fd428 8888b75 c319660 d0fd428 8888b75 d0fd428 8888b75 d0fd428 8888b75 c319660 d0fd428 8888b75 d0fd428 c319660 d0fd428 c319660 d0fd428 8888b75 5c4195a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
"""from fastapi import FastAPI, UploadFile, File, Form, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
import os
import tempfile
from typing import Optional
# Initialize FastAPI
app = FastAPI()
# CORS Policy: allow everything (because Hugging Face Spaces needs it open)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Static files and templates
app.mount("/static", StaticFiles(directory="static"), name="static")
app.mount("/resources", StaticFiles(directory="resources"), name="resources")
templates = Jinja2Templates(directory="templates")
# --- Serve Frontend ---
@app.get("/", response_class=HTMLResponse)
async def serve_home(request: Request):
return templates.TemplateResponse("HomeS.html", {"request": request})
# --- API Endpoints that frontend needs ---
@app.post("/summarize/")
async def summarize_document_endpoint(file: UploadFile = File(...), length: str = Form("medium")):
try:
from app import summarize_api
return await summarize_api(file, length)
except Exception as e:
return JSONResponse({"error": f"Summarization failed: {str(e)}"}, status_code=500)
@app.post("/imagecaption/")
async def caption_image_endpoint(file: UploadFile = File(...)):
try:
from appImage import caption_from_frontend
return await caption_from_frontend(file)
except Exception as e:
return JSONResponse({"error": f"Image captioning failed: {str(e)}"}, status_code=500)
# --- Serve generated audio/pdf files ---
@app.get("/files/{filename}")
async def serve_file(filename: str):
path = os.path.join(tempfile.gettempdir(), filename)
if os.path.exists(path):
return FileResponse(path)
return JSONResponse({"error": "File not found"}, status_code=404)
# (Optional) Unified prediction endpoint — Only if you want
@app.post("/predict")
async def predict(
file: UploadFile = File(...),
option: str = Form(...), # "Summarize" or "Captioning"
length: Optional[str] = Form(None) # Only for Summarize
):
try:
if option == "Summarize":
return await summarize_document_endpoint(file, length or "medium")
elif option == "Captioning":
return await caption_image_endpoint(file)
else:
return JSONResponse({"error": "Invalid option"}, status_code=400)
except Exception as e:
return JSONResponse({"error": f"Prediction failed: {str(e)}"}, status_code=500) """
from fastapi import FastAPI, UploadFile, File, Form, Request, HTTPException
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from fastapi.middleware.cors import CORSMiddleware
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoProcessor, AutoModelForCausalLM
from PIL import Image
import torch
import fitz # PyMuPDF
import docx
import pptx
import openpyxl
import re
import nltk
from nltk.tokenize import sent_tokenize
from gtts import gTTS
from fpdf import FPDF
import tempfile
import os
import shutil
import datetime
import hashlib
import easyocr
from typing import Optional
# Initialize app
app = FastAPI()
# CORS Configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Static assets
app.mount("/static", StaticFiles(directory="static"), name="static")
app.mount("/resources", StaticFiles(directory="resources"), name="resources")
# Templates
templates = Jinja2Templates(directory="templates")
# Initialize models
nltk.download('punkt', quiet=True)
# Document processing models
try:
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
model.eval()
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1)
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
except Exception as e:
print(f"Error loading summarization models: {e}")
summarizer = None
# Image captioning models
try:
processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
git_model.eval()
USE_GIT = True
except Exception as e:
print(f"Error loading GIT model, falling back to ViT: {e}")
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
USE_GIT = False
# Helper functions
def clean_text(text: str) -> str:
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
return text.strip()
def extract_text(file_path: str, file_extension: str):
try:
if file_extension == "pdf":
with fitz.open(file_path) as doc:
text = "\n".join(page.get_text("text") for page in doc)
if len(text.strip()) < 50:
images = [page.get_pixmap() for page in doc]
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
images[0].save(temp_img.name)
ocr_result = reader.readtext(temp_img.name, detail=0)
os.unlink(temp_img.name)
text = "\n".join(ocr_result) if ocr_result else text
return clean_text(text), ""
elif file_extension == "docx":
doc = docx.Document(file_path)
return clean_text("\n".join(p.text for p in doc.paragraphs)), ""
elif file_extension == "pptx":
prs = pptx.Presentation(file_path)
text = [shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")]
return clean_text("\n".join(text)), ""
elif file_extension == "xlsx":
wb = openpyxl.load_workbook(file_path, read_only=True)
text = [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]
return clean_text("\n".join(text)), ""
return "", "Unsupported file format"
except Exception as e:
return "", f"Error reading {file_extension.upper()} file: {str(e)}"
def chunk_text(text: str, max_tokens: int = 950):
try:
sentences = sent_tokenize(text)
except:
words = text.split()
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]
chunks = []
current_chunk = ""
for sentence in sentences:
token_length = len(tokenizer.encode(current_chunk + " " + sentence))
if token_length <= max_tokens:
current_chunk += " " + sentence
else:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def generate_summary(text: str, length: str = "medium") -> str:
cache_key = hashlib.md5((text + length).encode()).hexdigest()
length_params = {
"short": {"max_length": 80, "min_length": 30},
"medium": {"max_length": 200, "min_length": 80},
"long": {"max_length": 300, "min_length": 210}
}
chunks = chunk_text(text)
try:
summaries = summarizer(
chunks,
max_length=length_params[length]["max_length"],
min_length=length_params[length]["min_length"],
do_sample=False,
truncation=True
)
summary_texts = [s['summary_text'] for s in summaries]
except Exception as e:
summary_texts = [f"[Error: {str(e)}"]
final_summary = " ".join(summary_texts)
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
return final_summary if len(final_summary) > 25 else "Summary too short"
def text_to_speech(text: str):
try:
tts = gTTS(text)
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_audio.name)
return temp_audio.name
except Exception as e:
print(f"Error in text-to-speech: {e}")
return ""
def create_pdf(summary: str, original_filename: str):
try:
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", 'B', 16)
pdf.cell(200, 10, txt="Document Summary", ln=1, align='C')
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1)
pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
pdf.ln(10)
pdf.multi_cell(0, 10, txt=summary)
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
pdf.output(temp_pdf.name)
return temp_pdf.name
except Exception as e:
print(f"Error creating PDF: {e}")
return ""
def generate_caption(image_path: str) -> str:
try:
if USE_GIT:
image = Image.open(image_path).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
outputs = git_model.generate(**inputs, max_length=50)
caption = processor.batch_decode(outputs, skip_special_tokens=True)[0]
else:
result = captioner(image_path)
caption = result[0]['generated_text']
return caption
except Exception as e:
raise Exception(f"Caption generation failed: {str(e)}")
# API Endpoints
@app.post("/summarize/")
async def summarize_document(file: UploadFile = File(...), length: str = Form("medium")):
valid_types = [
'application/pdf',
'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
'application/vnd.openxmlformats-officedocument.presentationml.presentation',
'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'
]
if file.content_type not in valid_types:
raise HTTPException(
status_code=400,
detail="Please upload a valid document (PDF, DOCX, PPTX, or XLSX)"
)
try:
# Save temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp:
shutil.copyfileobj(file.file, temp)
temp_path = temp.name
# Process file
text, error = extract_text(temp_path, os.path.splitext(file.filename)[1][1:].lower())
if error:
raise HTTPException(status_code=400, detail=error)
if not text or len(text.split()) < 30:
raise HTTPException(status_code=400, detail="Document too short to summarize")
summary = generate_summary(text, length)
audio_path = text_to_speech(summary)
pdf_path = create_pdf(summary, file.filename)
return {
"summary": summary,
"audio_url": f"/files/{os.path.basename(audio_path)}" if audio_path else None,
"pdf_url": f"/files/{os.path.basename(pdf_path)}" if pdf_path else None
}
except HTTPException:
raise
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Summarization failed: {str(e)}"
)
finally:
if 'temp_path' in locals() and os.path.exists(temp_path):
os.unlink(temp_path)
@app.post("/imagecaption/")
async def caption_image(file: UploadFile = File(...)):
valid_types = ['image/jpeg', 'image/png', 'image/gif', 'image/webp']
if file.content_type not in valid_types:
raise HTTPException(
status_code=400,
detail="Please upload a valid image (JPEG, PNG, GIF, or WEBP)"
)
try:
# Save temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp:
shutil.copyfileobj(file.file, temp)
temp_path = temp.name
# Generate caption
caption = generate_caption(temp_path)
# Generate audio
audio_path = text_to_speech(caption)
return {
"answer": caption,
"audio": f"/files/{os.path.basename(audio_path)}" if audio_path else None
}
except HTTPException:
raise
except Exception as e:
raise HTTPException(
status_code=500,
detail=str(e)
)
finally:
if 'temp_path' in locals() and os.path.exists(temp_path):
os.unlink(temp_path)
@app.get("/files/{filename}")
async def serve_file(filename: str):
file_path = os.path.join(tempfile.gettempdir(), filename)
if os.path.exists(file_path):
return FileResponse(file_path)
raise HTTPException(status_code=404, detail="File not found")
@app.get("/", response_class=HTMLResponse)
async def serve_home(request: Request):
return templates.TemplateResponse("HomeS.html", {"request": request})
|