File size: 13,269 Bytes
5c4195a
59efe71
8888b75
59efe71
 
c0e0602
8888b75
 
59efe71
d0fd428
59efe71
 
d0fd428
59efe71
 
 
 
 
8888b75
59efe71
 
d0fd428
59efe71
c0e0602
59efe71
 
d0fd428
 
59efe71
 
c0e0602
8888b75
d0fd428
 
8888b75
d0fd428
8888b75
 
 
c319660
d0fd428
8888b75
 
d0fd428
8888b75
 
 
c319660
d0fd428
 
 
8888b75
 
 
d0fd428
 
 
8888b75
 
d0fd428
8888b75
 
c319660
d0fd428
 
8888b75
 
 
d0fd428
c319660
d0fd428
c319660
d0fd428
8888b75
5c4195a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
"""from fastapi import FastAPI, UploadFile, File, Form, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
import os
import tempfile
from typing import Optional

# Initialize FastAPI
app = FastAPI()

# CORS Policy: allow everything (because Hugging Face Spaces needs it open)
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Static files and templates
app.mount("/static", StaticFiles(directory="static"), name="static")
app.mount("/resources", StaticFiles(directory="resources"), name="resources")
templates = Jinja2Templates(directory="templates")

# --- Serve Frontend ---

@app.get("/", response_class=HTMLResponse)
async def serve_home(request: Request):
    return templates.TemplateResponse("HomeS.html", {"request": request})

# --- API Endpoints that frontend needs ---

@app.post("/summarize/")
async def summarize_document_endpoint(file: UploadFile = File(...), length: str = Form("medium")):
    try:
        from app import summarize_api
        return await summarize_api(file, length)
    except Exception as e:
        return JSONResponse({"error": f"Summarization failed: {str(e)}"}, status_code=500)

@app.post("/imagecaption/")
async def caption_image_endpoint(file: UploadFile = File(...)):
    try:
        from appImage import caption_from_frontend
        return await caption_from_frontend(file)
    except Exception as e:
        return JSONResponse({"error": f"Image captioning failed: {str(e)}"}, status_code=500)

# --- Serve generated audio/pdf files ---

@app.get("/files/{filename}")
async def serve_file(filename: str):
    path = os.path.join(tempfile.gettempdir(), filename)
    if os.path.exists(path):
        return FileResponse(path)
    return JSONResponse({"error": "File not found"}, status_code=404)

# (Optional) Unified prediction endpoint — Only if you want
@app.post("/predict")
async def predict(
    file: UploadFile = File(...),
    option: str = Form(...),        # "Summarize" or "Captioning"
    length: Optional[str] = Form(None)  # Only for Summarize
):
    try:
        if option == "Summarize":
            return await summarize_document_endpoint(file, length or "medium")
        elif option == "Captioning":
            return await caption_image_endpoint(file)
        else:
            return JSONResponse({"error": "Invalid option"}, status_code=400)
    except Exception as e:
        return JSONResponse({"error": f"Prediction failed: {str(e)}"}, status_code=500) """
from fastapi import FastAPI, UploadFile, File, Form, Request, HTTPException
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from fastapi.middleware.cors import CORSMiddleware
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoProcessor, AutoModelForCausalLM
from PIL import Image
import torch
import fitz  # PyMuPDF
import docx
import pptx
import openpyxl
import re
import nltk
from nltk.tokenize import sent_tokenize
from gtts import gTTS
from fpdf import FPDF
import tempfile
import os
import shutil
import datetime
import hashlib
import easyocr
from typing import Optional

# Initialize app
app = FastAPI()

# CORS Configuration
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Static assets
app.mount("/static", StaticFiles(directory="static"), name="static")
app.mount("/resources", StaticFiles(directory="resources"), name="resources")

# Templates
templates = Jinja2Templates(directory="templates")

# Initialize models
nltk.download('punkt', quiet=True)

# Document processing models
try:
    tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
    model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
    model.eval()
    summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1)
    reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
except Exception as e:
    print(f"Error loading summarization models: {e}")
    summarizer = None

# Image captioning models
try:
    processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
    git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
    git_model.eval()
    USE_GIT = True
except Exception as e:
    print(f"Error loading GIT model, falling back to ViT: {e}")
    captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
    USE_GIT = False

# Helper functions
def clean_text(text: str) -> str:
    text = re.sub(r'\s+', ' ', text)
    text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
    text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
    text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
    return text.strip()

def extract_text(file_path: str, file_extension: str):
    try:
        if file_extension == "pdf":
            with fitz.open(file_path) as doc:
                text = "\n".join(page.get_text("text") for page in doc)
                if len(text.strip()) < 50:
                    images = [page.get_pixmap() for page in doc]
                    temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
                    images[0].save(temp_img.name)
                    ocr_result = reader.readtext(temp_img.name, detail=0)
                    os.unlink(temp_img.name)
                    text = "\n".join(ocr_result) if ocr_result else text
                return clean_text(text), ""

        elif file_extension == "docx":
            doc = docx.Document(file_path)
            return clean_text("\n".join(p.text for p in doc.paragraphs)), ""

        elif file_extension == "pptx":
            prs = pptx.Presentation(file_path)
            text = [shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")]
            return clean_text("\n".join(text)), ""

        elif file_extension == "xlsx":
            wb = openpyxl.load_workbook(file_path, read_only=True)
            text = [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]
            return clean_text("\n".join(text)), ""

        return "", "Unsupported file format"
    except Exception as e:
        return "", f"Error reading {file_extension.upper()} file: {str(e)}"

def chunk_text(text: str, max_tokens: int = 950):
    try:
        sentences = sent_tokenize(text)
    except:
        words = text.split()
        sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]

    chunks = []
    current_chunk = ""
    for sentence in sentences:
        token_length = len(tokenizer.encode(current_chunk + " " + sentence))
        if token_length <= max_tokens:
            current_chunk += " " + sentence
        else:
            chunks.append(current_chunk.strip())
            current_chunk = sentence

    if current_chunk:
        chunks.append(current_chunk.strip())

    return chunks

def generate_summary(text: str, length: str = "medium") -> str:
    cache_key = hashlib.md5((text + length).encode()).hexdigest()
    
    length_params = {
        "short": {"max_length": 80, "min_length": 30},
        "medium": {"max_length": 200, "min_length": 80},
        "long": {"max_length": 300, "min_length": 210}
    }
    
    chunks = chunk_text(text)
    try:
        summaries = summarizer(
            chunks,
            max_length=length_params[length]["max_length"],
            min_length=length_params[length]["min_length"],
            do_sample=False,
            truncation=True
        )
        summary_texts = [s['summary_text'] for s in summaries]
    except Exception as e:
        summary_texts = [f"[Error: {str(e)}"]

    final_summary = " ".join(summary_texts)
    final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
    return final_summary if len(final_summary) > 25 else "Summary too short"

def text_to_speech(text: str):
    try:
        tts = gTTS(text)
        temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
        tts.save(temp_audio.name)
        return temp_audio.name
    except Exception as e:
        print(f"Error in text-to-speech: {e}")
        return ""

def create_pdf(summary: str, original_filename: str):
    try:
        pdf = FPDF()
        pdf.add_page()
        pdf.set_font("Arial", 'B', 16)
        pdf.cell(200, 10, txt="Document Summary", ln=1, align='C')
        pdf.set_font("Arial", size=12)
        pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1)
        pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
        pdf.ln(10)
        pdf.multi_cell(0, 10, txt=summary)
        temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
        pdf.output(temp_pdf.name)
        return temp_pdf.name
    except Exception as e:
        print(f"Error creating PDF: {e}")
        return ""

def generate_caption(image_path: str) -> str:
    try:
        if USE_GIT:
            image = Image.open(image_path).convert("RGB")
            inputs = processor(images=image, return_tensors="pt")
            outputs = git_model.generate(**inputs, max_length=50)
            caption = processor.batch_decode(outputs, skip_special_tokens=True)[0]
        else:
            result = captioner(image_path)
            caption = result[0]['generated_text']
        return caption
    except Exception as e:
        raise Exception(f"Caption generation failed: {str(e)}")

# API Endpoints
@app.post("/summarize/")
async def summarize_document(file: UploadFile = File(...), length: str = Form("medium")):
    valid_types = [
        'application/pdf',
        'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
        'application/vnd.openxmlformats-officedocument.presentationml.presentation',
        'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'
    ]
    
    if file.content_type not in valid_types:
        raise HTTPException(
            status_code=400,
            detail="Please upload a valid document (PDF, DOCX, PPTX, or XLSX)"
        )

    try:
        # Save temp file
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp:
            shutil.copyfileobj(file.file, temp)
            temp_path = temp.name

        # Process file
        text, error = extract_text(temp_path, os.path.splitext(file.filename)[1][1:].lower())
        if error:
            raise HTTPException(status_code=400, detail=error)

        if not text or len(text.split()) < 30:
            raise HTTPException(status_code=400, detail="Document too short to summarize")

        summary = generate_summary(text, length)
        audio_path = text_to_speech(summary)
        pdf_path = create_pdf(summary, file.filename)

        return {
            "summary": summary,
            "audio_url": f"/files/{os.path.basename(audio_path)}" if audio_path else None,
            "pdf_url": f"/files/{os.path.basename(pdf_path)}" if pdf_path else None
        }

    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(
            status_code=500,
            detail=f"Summarization failed: {str(e)}"
        )
    finally:
        if 'temp_path' in locals() and os.path.exists(temp_path):
            os.unlink(temp_path)

@app.post("/imagecaption/")
async def caption_image(file: UploadFile = File(...)):
    valid_types = ['image/jpeg', 'image/png', 'image/gif', 'image/webp']
    if file.content_type not in valid_types:
        raise HTTPException(
            status_code=400,
            detail="Please upload a valid image (JPEG, PNG, GIF, or WEBP)"
        )

    try:
        # Save temp file
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp:
            shutil.copyfileobj(file.file, temp)
            temp_path = temp.name

        # Generate caption
        caption = generate_caption(temp_path)
        
        # Generate audio
        audio_path = text_to_speech(caption)

        return {
            "answer": caption,
            "audio": f"/files/{os.path.basename(audio_path)}" if audio_path else None
        }

    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(
            status_code=500,
            detail=str(e)
        )
    finally:
        if 'temp_path' in locals() and os.path.exists(temp_path):
            os.unlink(temp_path)

@app.get("/files/{filename}")
async def serve_file(filename: str):
    file_path = os.path.join(tempfile.gettempdir(), filename)
    if os.path.exists(file_path):
        return FileResponse(file_path)
    raise HTTPException(status_code=404, detail="File not found")

@app.get("/", response_class=HTMLResponse)
async def serve_home(request: Request):
    return templates.TemplateResponse("HomeS.html", {"request": request})