Summarization / app.py
ikraamkb's picture
add download pdf
315a442 verified
raw
history blame
9.88 kB
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import fitz # PyMuPDF
import docx
import pptx
import openpyxl
import re
import nltk
from nltk.tokenize import sent_tokenize
import torch
from fastapi import FastAPI
from fastapi.responses import RedirectResponse, FileResponse
from gtts import gTTS
import tempfile
import os
import easyocr
from fpdf import FPDF
import datetime
# Download required NLTK data
nltk.download('punkt', quiet=True)
# Initialize components
app = FastAPI()
# Load models (CPU optimized)
MODEL_NAME = "facebook/bart-large-cnn"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
summarizer = pipeline(
"summarization",
model=model,
tokenizer=tokenizer,
device=-1, # Force CPU usage
torch_dtype=torch.float32
)
# Initialize EasyOCR reader
reader = easyocr.Reader(['en']) # English only for faster initialization
def clean_text(text: str) -> str:
"""Clean and normalize document text"""
text = re.sub(r'\s+', ' ', text) # Normalize whitespace
text = re.sub(r'β€’\s*|\d\.\s+', '', text) # Remove bullets and numbering
text = re.sub(r'\[.*?\]|\(.*?\)', '', text) # Remove brackets/parentheses
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE) # Remove page numbers
return text.strip()
def extract_text(file_path: str, file_extension: str) -> tuple[str, str]:
"""Extract text from various document formats"""
try:
if file_extension == "pdf":
with fitz.open(file_path) as doc:
text = "\n".join(page.get_text("text") for page in doc)
# Try OCR for scanned PDFs if text extraction fails
if len(text.strip()) < 50:
images = [page.get_pixmap() for page in doc]
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
images[0].save(temp_img.name)
ocr_result = reader.readtext(temp_img.name, detail=0)
os.unlink(temp_img.name)
text = "\n".join(ocr_result) if ocr_result else text
return clean_text(text), ""
elif file_extension == "docx":
doc = docx.Document(file_path)
return clean_text("\n".join(p.text for p in doc.paragraphs)), ""
elif file_extension == "pptx":
prs = pptx.Presentation(file_path)
text = []
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text.append(shape.text)
return clean_text("\n".join(text)), ""
elif file_extension == "xlsx":
wb = openpyxl.load_workbook(file_path, read_only=True)
text = []
for sheet in wb.sheetnames:
for row in wb[sheet].iter_rows(values_only=True):
text.append(" ".join(str(cell) for cell in row if cell))
return clean_text("\n".join(text)), ""
elif file_extension in ["jpg", "jpeg", "png"]:
ocr_result = reader.readtext(file_path, detail=0)
return clean_text("\n".join(ocr_result)), ""
return "", "Unsupported file format"
except Exception as e:
return "", f"Error reading {file_extension.upper()} file: {str(e)}"
def chunk_text(text: str, max_tokens: int = 768) -> list[str]:
"""Split text into manageable chunks for summarization"""
try:
sentences = sent_tokenize(text)
except:
# Fallback if sentence tokenization fails
words = text.split()
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk.split()) + len(sentence.split()) <= max_tokens:
current_chunk += " " + sentence
else:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def generate_summary(text: str, length: str = "medium") -> str:
"""Generate summary with appropriate length parameters"""
length_params = {
"short": {"max_length": 80, "min_length": 30},
"medium": {"max_length": 150, "min_length": 60},
"long": {"max_length": 200, "min_length": 80}
}
chunks = chunk_text(text)
summaries = []
for chunk in chunks:
try:
summary = summarizer(
chunk,
max_length=length_params[length]["max_length"],
min_length=length_params[length]["min_length"],
do_sample=False,
truncation=True,
no_repeat_ngram_size=2,
num_beams=2,
early_stopping=True
)
summaries.append(summary[0]['summary_text'])
except Exception as e:
summaries.append(f"[Chunk error: {str(e)}]")
# Combine and format the final summary
final_summary = " ".join(summaries)
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
return final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief"
def text_to_speech(text: str) -> str:
"""Convert text to speech and return temporary audio file path"""
try:
tts = gTTS(text)
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_audio.name)
return temp_audio.name
except Exception as e:
print(f"Error in text-to-speech: {e}")
return ""
def create_pdf(summary: str, original_filename: str) -> str:
"""Create a PDF file from the summary text"""
try:
# Create PDF object
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
# Add title
pdf.set_font("Arial", 'B', 16)
pdf.cell(200, 10, txt="Document Summary", ln=1, align='C')
pdf.set_font("Arial", size=12)
# Add metadata
pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1)
pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
pdf.ln(10)
# Add summary content
pdf.multi_cell(0, 10, txt=summary)
# Save to temporary file
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
pdf.output(temp_pdf.name)
return temp_pdf.name
except Exception as e:
print(f"Error creating PDF: {e}")
return ""
def summarize_document(file, summary_length: str, enable_tts: bool):
"""Main processing function for Gradio interface"""
if file is None:
return "Please upload a document first", "Ready", None, None
file_path = file.name
file_extension = file_path.split(".")[-1].lower()
original_filename = os.path.basename(file_path)
text, error = extract_text(file_path, file_extension)
if error:
return error, "Error", None, None
if not text or len(text.split()) < 30:
return "Document is too short or contains too little text to summarize", "Ready", None, None
try:
summary = generate_summary(text, summary_length)
audio_path = text_to_speech(summary) if enable_tts else None
pdf_path = create_pdf(summary, original_filename)
return summary, "Summary complete", audio_path, pdf_path
except Exception as e:
return f"Summarization error: {str(e)}", "Error", None, None
# Gradio Interface
with gr.Blocks(title="Document Summarizer", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ“„ Advanced Document Summarizer")
gr.Markdown("Upload a document to generate a summary with optional audio reading and PDF download")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload Document",
file_types=[".pdf", ".docx", ".pptx", ".xlsx", ".jpg", ".jpeg", ".png"],
type="filepath"
)
length_radio = gr.Radio(
["short", "medium", "long"],
value="medium",
label="Summary Length"
)
tts_checkbox = gr.Checkbox(
label="Enable Text-to-Speech",
value=False
)
submit_btn = gr.Button("Generate Summary", variant="primary")
with gr.Column():
output = gr.Textbox(label="Summary", lines=10)
status = gr.Textbox(label="Status", interactive=False)
audio_output = gr.Audio(label="Audio Summary", visible=False)
pdf_download = gr.File(label="Download Summary as PDF", visible=False)
def toggle_audio_visibility(enable_tts):
return gr.Audio(visible=enable_tts)
tts_checkbox.change(
fn=toggle_audio_visibility,
inputs=tts_checkbox,
outputs=audio_output
)
submit_btn.click(
fn=summarize_document,
inputs=[file_input, length_radio, tts_checkbox],
outputs=[output, status, audio_output, pdf_download],
api_name="summarize"
)
# FastAPI endpoints for files
@app.get("/files/{file_name}")
async def get_file(file_name: str):
file_path = os.path.join(tempfile.gettempdir(), file_name)
if os.path.exists(file_path):
return FileResponse(file_path)
return JSONResponse({"error": "File not found"}, status_code=404)
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def redirect_to_interface():
return RedirectResponse(url="/")