Spaces:
Running
Running
add download pdf
Browse files
app.py
CHANGED
@@ -1,97 +1,3 @@
|
|
1 |
-
"""import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
-
import fitz # PyMuPDF
|
4 |
-
import docx
|
5 |
-
import pptx
|
6 |
-
import openpyxl
|
7 |
-
import os
|
8 |
-
|
9 |
-
from fastapi import FastAPI
|
10 |
-
from fastapi.responses import RedirectResponse
|
11 |
-
|
12 |
-
# Load your custom summarization model
|
13 |
-
pipe = pipeline("summarization", model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn")
|
14 |
-
|
15 |
-
# Document text extraction function
|
16 |
-
def extract_text(file):
|
17 |
-
ext = file.name.split(".")[-1].lower()
|
18 |
-
path = file.name
|
19 |
-
|
20 |
-
if ext == "pdf":
|
21 |
-
try:
|
22 |
-
with fitz.open(path) as doc:
|
23 |
-
return "\n".join([page.get_text("text") for page in doc])
|
24 |
-
except Exception as e:
|
25 |
-
return f"Error reading PDF: {e}"
|
26 |
-
|
27 |
-
elif ext == "docx":
|
28 |
-
try:
|
29 |
-
doc = docx.Document(path)
|
30 |
-
return "\n".join([p.text for p in doc.paragraphs])
|
31 |
-
except Exception as e:
|
32 |
-
return f"Error reading DOCX: {e}"
|
33 |
-
|
34 |
-
elif ext == "pptx":
|
35 |
-
try:
|
36 |
-
prs = pptx.Presentation(path)
|
37 |
-
text = ""
|
38 |
-
for slide in prs.slides:
|
39 |
-
for shape in slide.shapes:
|
40 |
-
if hasattr(shape, "text"):
|
41 |
-
text += shape.text + "\n"
|
42 |
-
return text
|
43 |
-
except Exception as e:
|
44 |
-
return f"Error reading PPTX: {e}"
|
45 |
-
|
46 |
-
elif ext == "xlsx":
|
47 |
-
try:
|
48 |
-
wb = openpyxl.load_workbook(path)
|
49 |
-
text = ""
|
50 |
-
for sheet in wb.sheetnames:
|
51 |
-
for row in wb[sheet].iter_rows(values_only=True):
|
52 |
-
text += " ".join([str(cell) for cell in row if cell]) + "\n"
|
53 |
-
return text
|
54 |
-
except Exception as e:
|
55 |
-
return f"Error reading XLSX: {e}"
|
56 |
-
else:
|
57 |
-
return "Unsupported file format"
|
58 |
-
|
59 |
-
# Summarization logic
|
60 |
-
def summarize_document(file):
|
61 |
-
text = extract_text(file)
|
62 |
-
if "Error" in text or "Unsupported" in text:
|
63 |
-
return text
|
64 |
-
|
65 |
-
word_count = len(text.split())
|
66 |
-
max_summary_len = max(20, int(word_count * 0.2))
|
67 |
-
|
68 |
-
try:
|
69 |
-
summary = pipe(text, max_length=max_summary_len, min_length=int(max_summary_len * 0.6), do_sample=False)
|
70 |
-
# Print the summary to debug its structure
|
71 |
-
print(summary)
|
72 |
-
return summary[0]['summary_text'] # Access the correct key for the output
|
73 |
-
except Exception as e:
|
74 |
-
return f"Error during summarization: {e}"
|
75 |
-
|
76 |
-
# Gradio Interface
|
77 |
-
demo = gr.Interface(
|
78 |
-
fn=summarize_document,
|
79 |
-
inputs=gr.File(label="Upload a document (PDF, DOCX, PPTX, XLSX)", file_types=[".pdf", ".docx", ".pptx", ".xlsx"]),
|
80 |
-
outputs=gr.Textbox(label="20% Summary"),
|
81 |
-
title="📄 Document Summarizer (20% Length)",
|
82 |
-
description="Upload a document and get a concise summary generated by your custom Hugging Face model."
|
83 |
-
)
|
84 |
-
|
85 |
-
# FastAPI setup
|
86 |
-
app = FastAPI()
|
87 |
-
|
88 |
-
# Mount Gradio at "/"
|
89 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
90 |
-
|
91 |
-
# Optional root redirect
|
92 |
-
@app.get("/")
|
93 |
-
def redirect_to_interface():
|
94 |
-
return RedirectResponse(url="/")"""
|
95 |
import gradio as gr
|
96 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
97 |
import fitz # PyMuPDF
|
@@ -108,6 +14,8 @@ from gtts import gTTS
|
|
108 |
import tempfile
|
109 |
import os
|
110 |
import easyocr
|
|
|
|
|
111 |
|
112 |
# Download required NLTK data
|
113 |
nltk.download('punkt', quiet=True)
|
@@ -250,32 +158,63 @@ def text_to_speech(text: str) -> str:
|
|
250 |
print(f"Error in text-to-speech: {e}")
|
251 |
return ""
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
def summarize_document(file, summary_length: str, enable_tts: bool):
|
254 |
"""Main processing function for Gradio interface"""
|
255 |
if file is None:
|
256 |
-
return "Please upload a document first", "Ready", None
|
257 |
|
258 |
file_path = file.name
|
259 |
file_extension = file_path.split(".")[-1].lower()
|
|
|
260 |
|
261 |
text, error = extract_text(file_path, file_extension)
|
262 |
if error:
|
263 |
-
return error, "Error", None
|
264 |
|
265 |
if not text or len(text.split()) < 30:
|
266 |
-
return "Document is too short or contains too little text to summarize", "Ready", None
|
267 |
|
268 |
try:
|
269 |
summary = generate_summary(text, summary_length)
|
270 |
audio_path = text_to_speech(summary) if enable_tts else None
|
271 |
-
|
|
|
272 |
except Exception as e:
|
273 |
-
return f"Summarization error: {str(e)}", "Error", None
|
274 |
|
275 |
# Gradio Interface
|
276 |
with gr.Blocks(title="Document Summarizer", theme=gr.themes.Soft()) as demo:
|
277 |
gr.Markdown("# 📄 Advanced Document Summarizer")
|
278 |
-
gr.Markdown("Upload a document to generate a summary with optional audio reading")
|
279 |
|
280 |
with gr.Row():
|
281 |
with gr.Column():
|
@@ -299,6 +238,7 @@ with gr.Blocks(title="Document Summarizer", theme=gr.themes.Soft()) as demo:
|
|
299 |
output = gr.Textbox(label="Summary", lines=10)
|
300 |
status = gr.Textbox(label="Status", interactive=False)
|
301 |
audio_output = gr.Audio(label="Audio Summary", visible=False)
|
|
|
302 |
|
303 |
def toggle_audio_visibility(enable_tts):
|
304 |
return gr.Audio(visible=enable_tts)
|
@@ -312,16 +252,16 @@ with gr.Blocks(title="Document Summarizer", theme=gr.themes.Soft()) as demo:
|
|
312 |
submit_btn.click(
|
313 |
fn=summarize_document,
|
314 |
inputs=[file_input, length_radio, tts_checkbox],
|
315 |
-
outputs=[output, status, audio_output],
|
316 |
api_name="summarize"
|
317 |
)
|
318 |
|
319 |
-
# FastAPI endpoints for
|
320 |
-
@app.get("/
|
321 |
-
async def
|
322 |
file_path = os.path.join(tempfile.gettempdir(), file_name)
|
323 |
if os.path.exists(file_path):
|
324 |
-
return FileResponse(file_path
|
325 |
return JSONResponse({"error": "File not found"}, status_code=404)
|
326 |
|
327 |
# Mount Gradio app to FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import fitz # PyMuPDF
|
|
|
14 |
import tempfile
|
15 |
import os
|
16 |
import easyocr
|
17 |
+
from fpdf import FPDF
|
18 |
+
import datetime
|
19 |
|
20 |
# Download required NLTK data
|
21 |
nltk.download('punkt', quiet=True)
|
|
|
158 |
print(f"Error in text-to-speech: {e}")
|
159 |
return ""
|
160 |
|
161 |
+
def create_pdf(summary: str, original_filename: str) -> str:
|
162 |
+
"""Create a PDF file from the summary text"""
|
163 |
+
try:
|
164 |
+
# Create PDF object
|
165 |
+
pdf = FPDF()
|
166 |
+
pdf.add_page()
|
167 |
+
pdf.set_font("Arial", size=12)
|
168 |
+
|
169 |
+
# Add title
|
170 |
+
pdf.set_font("Arial", 'B', 16)
|
171 |
+
pdf.cell(200, 10, txt="Document Summary", ln=1, align='C')
|
172 |
+
pdf.set_font("Arial", size=12)
|
173 |
+
|
174 |
+
# Add metadata
|
175 |
+
pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1)
|
176 |
+
pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
|
177 |
+
pdf.ln(10)
|
178 |
+
|
179 |
+
# Add summary content
|
180 |
+
pdf.multi_cell(0, 10, txt=summary)
|
181 |
+
|
182 |
+
# Save to temporary file
|
183 |
+
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
184 |
+
pdf.output(temp_pdf.name)
|
185 |
+
return temp_pdf.name
|
186 |
+
except Exception as e:
|
187 |
+
print(f"Error creating PDF: {e}")
|
188 |
+
return ""
|
189 |
+
|
190 |
def summarize_document(file, summary_length: str, enable_tts: bool):
|
191 |
"""Main processing function for Gradio interface"""
|
192 |
if file is None:
|
193 |
+
return "Please upload a document first", "Ready", None, None
|
194 |
|
195 |
file_path = file.name
|
196 |
file_extension = file_path.split(".")[-1].lower()
|
197 |
+
original_filename = os.path.basename(file_path)
|
198 |
|
199 |
text, error = extract_text(file_path, file_extension)
|
200 |
if error:
|
201 |
+
return error, "Error", None, None
|
202 |
|
203 |
if not text or len(text.split()) < 30:
|
204 |
+
return "Document is too short or contains too little text to summarize", "Ready", None, None
|
205 |
|
206 |
try:
|
207 |
summary = generate_summary(text, summary_length)
|
208 |
audio_path = text_to_speech(summary) if enable_tts else None
|
209 |
+
pdf_path = create_pdf(summary, original_filename)
|
210 |
+
return summary, "Summary complete", audio_path, pdf_path
|
211 |
except Exception as e:
|
212 |
+
return f"Summarization error: {str(e)}", "Error", None, None
|
213 |
|
214 |
# Gradio Interface
|
215 |
with gr.Blocks(title="Document Summarizer", theme=gr.themes.Soft()) as demo:
|
216 |
gr.Markdown("# 📄 Advanced Document Summarizer")
|
217 |
+
gr.Markdown("Upload a document to generate a summary with optional audio reading and PDF download")
|
218 |
|
219 |
with gr.Row():
|
220 |
with gr.Column():
|
|
|
238 |
output = gr.Textbox(label="Summary", lines=10)
|
239 |
status = gr.Textbox(label="Status", interactive=False)
|
240 |
audio_output = gr.Audio(label="Audio Summary", visible=False)
|
241 |
+
pdf_download = gr.File(label="Download Summary as PDF", visible=False)
|
242 |
|
243 |
def toggle_audio_visibility(enable_tts):
|
244 |
return gr.Audio(visible=enable_tts)
|
|
|
252 |
submit_btn.click(
|
253 |
fn=summarize_document,
|
254 |
inputs=[file_input, length_radio, tts_checkbox],
|
255 |
+
outputs=[output, status, audio_output, pdf_download],
|
256 |
api_name="summarize"
|
257 |
)
|
258 |
|
259 |
+
# FastAPI endpoints for files
|
260 |
+
@app.get("/files/{file_name}")
|
261 |
+
async def get_file(file_name: str):
|
262 |
file_path = os.path.join(tempfile.gettempdir(), file_name)
|
263 |
if os.path.exists(file_path):
|
264 |
+
return FileResponse(file_path)
|
265 |
return JSONResponse({"error": "File not found"}, status_code=404)
|
266 |
|
267 |
# Mount Gradio app to FastAPI
|