Spaces:
Running
Running
File size: 10,314 Bytes
130c582 551e732 130c582 551e732 130c582 551e732 130c582 fe437cb 9b32604 315a442 130c582 551e732 f895e21 130c582 551e732 9b32604 551e732 130c582 551e732 130c582 551e732 130c582 9b32604 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 9b32604 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 9b32604 551e732 130c582 551e732 130c582 551e732 130c582 b6260fc 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 9b32604 315a442 9b32604 551e732 315a442 551e732 315a442 551e732 315a442 551e732 315a442 551e732 f895e21 9b32604 fe437cb 315a442 130c582 315a442 130c582 551e732 9b32604 315a442 130c582 9b32604 130c582 9b32604 551e732 130c582 551e732 130c582 9b32604 315a442 9b32604 fe437cb 9b32604 130c582 551e732 9b32604 fe437cb 551e732 130c582 315a442 9b32604 315a442 9b32604 551e732 145f8e8 130c582 551e732 fe437cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import fitz # PyMuPDF
import docx
import pptx
import openpyxl
import re
import nltk
from nltk.tokenize import sent_tokenize
import torch
from fastapi import FastAPI
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
from gtts import gTTS
import tempfile
import os
import easyocr
from fpdf import FPDF
import datetime
# Download required NLTK data
nltk.download('punkt', quiet=True)
# Initialize components
app = FastAPI()
# Load models (CPU optimized)
MODEL_NAME = "facebook/bart-large-cnn"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
summarizer = pipeline(
"summarization",
model=model,
tokenizer=tokenizer,
device=-1, # Force CPU usage
torch_dtype=torch.float32
)
# Initialize EasyOCR reader
reader = easyocr.Reader(['en']) # English only for faster initialization
def clean_text(text: str) -> str:
"""Clean and normalize document text"""
text = re.sub(r'\s+', ' ', text) # Normalize whitespace
text = re.sub(r'β’\s*|\d\.\s+', '', text) # Remove bullets and numbering
text = re.sub(r'\[.*?\]|\(.*?\)', '', text) # Remove brackets/parentheses
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE) # Remove page numbers
return text.strip()
def extract_text(file_path: str, file_extension: str) -> tuple[str, str]:
"""Extract text from various document formats"""
try:
if file_extension == "pdf":
with fitz.open(file_path) as doc:
text = "\n".join(page.get_text("text") for page in doc)
# Try OCR for scanned PDFs if text extraction fails
if len(text.strip()) < 50:
images = [page.get_pixmap() for page in doc]
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
images[0].save(temp_img.name)
ocr_result = reader.readtext(temp_img.name, detail=0)
os.unlink(temp_img.name)
text = "\n".join(ocr_result) if ocr_result else text
return clean_text(text), ""
elif file_extension == "docx":
doc = docx.Document(file_path)
return clean_text("\n".join(p.text for p in doc.paragraphs)), ""
elif file_extension == "pptx":
prs = pptx.Presentation(file_path)
text = []
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text.append(shape.text)
return clean_text("\n".join(text)), ""
elif file_extension == "xlsx":
wb = openpyxl.load_workbook(file_path, read_only=True)
text = []
for sheet in wb.sheetnames:
for row in wb[sheet].iter_rows(values_only=True):
text.append(" ".join(str(cell) for cell in row if cell))
return clean_text("\n".join(text)), ""
elif file_extension in ["jpg", "jpeg", "png"]:
ocr_result = reader.readtext(file_path, detail=0)
return clean_text("\n".join(ocr_result)), ""
return "", "Unsupported file format"
except Exception as e:
return "", f"Error reading {file_extension.upper()} file: {str(e)}"
def chunk_text(text: str, max_tokens: int = 768) -> list[str]:
"""Split text into manageable chunks for summarization"""
try:
sentences = sent_tokenize(text)
except:
# Fallback if sentence tokenization fails
words = text.split()
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk.split()) + len(sentence.split()) <= max_tokens:
current_chunk += " " + sentence
else:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def generate_summary(text: str, length: str = "medium") -> str:
"""Generate summary with appropriate length parameters"""
length_params = {
"short": {"max_length": 80, "min_length": 30},
"medium": {"max_length": 200, "min_length": 80},
"long": {"max_length": 300, "min_length": 210}
}
chunks = chunk_text(text)
summaries = []
for chunk in chunks:
try:
summary = summarizer(
chunk,
max_length=length_params[length]["max_length"],
min_length=length_params[length]["min_length"],
do_sample=False,
truncation=True,
no_repeat_ngram_size=2,
num_beams=2,
early_stopping=True
)
summaries.append(summary[0]['summary_text'])
except Exception as e:
summaries.append(f"[Chunk error: {str(e)}]")
# Combine and format the final summary
final_summary = " ".join(summaries)
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
return final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief"
def text_to_speech(text: str) -> str:
"""Convert text to speech and return temporary audio file path"""
try:
tts = gTTS(text)
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_audio.name)
return temp_audio.name
except Exception as e:
print(f"Error in text-to-speech: {e}")
return ""
def create_pdf(summary: str, original_filename: str) -> str:
"""Create a PDF file from the summary text"""
try:
# Create PDF object
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
# Add title
pdf.set_font("Arial", 'B', 16)
pdf.cell(200, 10, txt="Document Summary", ln=1, align='C')
pdf.set_font("Arial", size=12)
# Add metadata
pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1)
pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
pdf.ln(10)
# Add summary content
pdf.multi_cell(0, 10, txt=summary)
# Save to temporary file
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
pdf.output(temp_pdf.name)
return temp_pdf.name
except Exception as e:
print(f"Error creating PDF: {e}")
return ""
def summarize_document(file, summary_length: str, enable_tts: bool):
"""Main processing function for Gradio interface"""
if file is None:
return "Please upload a document first", "Ready", None, None
file_path = file.name
file_extension = file_path.split(".")[-1].lower()
original_filename = os.path.basename(file_path)
text, error = extract_text(file_path, file_extension)
if error:
return error, "Error", None, None
if not text or len(text.split()) < 30:
return "Document is too short or contains too little text to summarize", "Ready", None, None
try:
summary = generate_summary(text, summary_length)
audio_path = text_to_speech(summary) if enable_tts else None
pdf_path = create_pdf(summary, original_filename) if summary else None
return summary, "Summary complete", audio_path, pdf_path
except Exception as e:
return f"Summarization error: {str(e)}", "Error", None, None
# Gradio Interface
with gr.Blocks(title="Document Summarizer", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π Advanced Document Summarizer")
gr.Markdown("Upload a document to generate a summary with optional audio reading and PDF download")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload Document",
file_types=[".pdf", ".docx", ".pptx", ".xlsx", ".jpg", ".jpeg", ".png"],
type="filepath"
)
length_radio = gr.Radio(
["short", "medium", "long"],
value="medium",
label="Summary Length"
)
tts_checkbox = gr.Checkbox(
label="Enable Text-to-Speech",
value=False
)
submit_btn = gr.Button("Generate Summary", variant="primary")
with gr.Column():
output = gr.Textbox(label="Summary", lines=10)
status = gr.Textbox(label="Status", interactive=False)
audio_output = gr.Audio(label="Audio Summary", visible=False)
pdf_download = gr.File(label="Download Summary as PDF", visible=False)
def toggle_audio_visibility(enable_tts):
return gr.Audio(visible=enable_tts)
def update_ui(summary, status, audio_path, pdf_path):
return (
summary,
status,
gr.Audio(visible=audio_path is not None, value=audio_path),
gr.File(visible=pdf_path is not None, value=pdf_path)
)
tts_checkbox.change(
fn=toggle_audio_visibility,
inputs=tts_checkbox,
outputs=audio_output
)
submit_btn.click(
fn=summarize_document,
inputs=[file_input, length_radio, tts_checkbox],
outputs=[output, status, audio_output, pdf_download]
).then(
fn=update_ui,
inputs=[output, status, audio_output, pdf_download],
outputs=[output, status, audio_output, pdf_download]
)
# FastAPI endpoints for files
@app.get("/files/{file_name}")
async def get_file(file_name: str):
file_path = os.path.join(tempfile.gettempdir(), file_name)
if os.path.exists(file_path):
return FileResponse(file_path)
return JSONResponse({"error": "File not found"}, status_code=404)
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def redirect_to_interface():
return RedirectResponse(url="/")
|