Spaces:
Sleeping
Sleeping
File size: 11,328 Bytes
d6b82f5 3cce2c4 d6b82f5 9adf9a9 d6b82f5 3cce2c4 d6b82f5 3366453 d6b82f5 5321ee9 3cce2c4 5321ee9 d6b82f5 3cce2c4 d6b82f5 3cce2c4 87ce197 de212d9 3cce2c4 87ce197 3cce2c4 d6b82f5 87ce197 6dfb8a2 3cce2c4 d6b82f5 3cce2c4 d6b82f5 3cce2c4 d6b82f5 3cce2c4 d6b82f5 3cce2c4 d6b82f5 3cce2c4 d6b82f5 3cce2c4 d6b82f5 3cce2c4 d6b82f5 3cce2c4 d6b82f5 3cce2c4 d6b82f5 3cce2c4 d6b82f5 3cce2c4 d6b82f5 3cce2c4 d6b82f5 3cce2c4 d6b82f5 3cce2c4 d6b82f5 3cce2c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import os
import multiprocessing
import concurrent.futures
from langchain_community.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from transformers import AutoModel, AutoTokenizer
import torch.nn.functional as F
import faiss
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
from datetime import datetime
import json
import gradio as gr
import re
from threading import Thread
class DocumentRetrievalAndGeneration:
def __init__(self, embedding_model_name, lm_model_id, data_folder):
self.all_splits = self.load_documents(data_folder)
# Get token from HF Spaces environment
hf_token = os.getenv('HF_TOKEN')
print(f"Token found: {hf_token is not None}")
self.embedding_tokenizer = AutoTokenizer.from_pretrained(embedding_model_name, token=hf_token)
self.embedding_model = AutoModel.from_pretrained(embedding_model_name, token=hf_token)
self.gpu_index = self.create_faiss_index()
self.tokenizer, self.model = self.initialize_llm(lm_model_id)
def load_documents(self, folder_path):
loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
all_splits = text_splitter.split_documents(documents)
print('Length of documents:', len(documents))
print("LEN of all_splits", len(all_splits))
for i in range(min(3, len(all_splits))):
print(all_splits[i].page_content[:200] + "...")
return all_splits
def encode_texts(self, texts):
encoded_input = self.embedding_tokenizer(texts, padding=True, truncation=True, max_length=512, return_tensors='pt')
with torch.no_grad():
model_output = self.embedding_model(**encoded_input)
embeddings = self.mean_pooling(model_output, encoded_input['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
return embeddings.cpu().numpy()
def mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def create_faiss_index(self):
all_texts = [split.page_content for split in self.all_splits]
batch_size = 512 # Reduced for Spaces
all_embeddings = []
for i in range(0, len(all_texts), batch_size):
batch_texts = all_texts[i:i+batch_size]
batch_embeddings = self.encode_texts(batch_texts)
all_embeddings.append(batch_embeddings)
print(f"Processed batch {i//batch_size + 1}/{(len(all_texts) + batch_size - 1)//batch_size}")
embeddings = np.vstack(all_embeddings)
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
# Try GPU first, fallback to CPU if fails
try:
if torch.cuda.is_available():
gpu_resource = faiss.StandardGpuResources()
gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
print("π Using GPU for FAISS")
return gpu_index
else:
print("π» Using CPU for FAISS")
return index
except Exception as e:
print(f"GPU FAISS failed: {e}, using CPU")
return index
def initialize_llm(self, model_id):
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
hf_token = os.getenv('HF_TOKEN')
print(f"LLM Token found: {hf_token is not None}")
print(f"Token starts with: {hf_token[:10] if hf_token else 'None'}...")
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
# Handle pad_token for latest transformers
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config,
token=hf_token
)
print(f"π¦ Model loaded on: {model.device}")
return tokenizer, model
def generate_response_with_timeout(self, input_ids, max_new_tokens=800):
try:
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=1.0,
top_k=20,
temperature=0.8,
repetition_penalty=1.2,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
streamer=streamer,
)
thread = Thread(target=self.model.generate, kwargs=generate_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
thread.join()
return generated_text
except Exception as e:
print(f"Error in generation: {str(e)}")
return "Text generation process encountered an error"
def query_and_generate_response(self, query):
if not query.strip():
return "Please enter a valid query", ""
try:
similarityThreshold = 1.0
query_embedding = self.encode_texts([query])[0]
distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
print("Distance", distances, "indices", indices)
content = ""
for idx, distance in zip(indices[0], distances[0]):
content += "-" * 50 + "\n"
content += self.all_splits[idx].page_content + "\n"
print(f"π Chunk {idx} (distance: {distance:.3f})")
conversation = [
{"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
{"role": "user", "content": f"""
I need you to answer my question and provide related information in a specific format.
I have provided five relatable json files {content}, choose the most suitable chunks for answering the query.
RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
Here's my question:
Query: {query}
Solution==>
"""}
]
input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt").to(self.model.device)
start_time = datetime.now()
generated_response = self.generate_response_with_timeout(input_ids)
elapsed_time = datetime.now() - start_time
print("Generated response:", generated_response)
print("Time elapsed:", elapsed_time)
solution_text = generated_response.strip()
if "Solution:" in solution_text:
solution_text = solution_text.split("Solution:", 1)[1].strip()
# Post-processing to remove "assistant" prefix
solution_text = re.sub(r'^assistant\s*', '', solution_text, flags=re.IGNORECASE)
solution_text = solution_text.strip()
return solution_text, content[:1000] + "..." if len(content) > 1000 else content
except Exception as e:
print(f"Error in query processing: {e}")
return f"Error processing query: {str(e)}", ""
def qa_infer_gradio(self, query):
response = self.query_and_generate_response(query)
return response
# Initialize the system
print("Initializing TI E2E Forum Assistant...")
embedding_model_name = 'sentence-transformers/all-MiniLM-L6-v2' # More compatible model
lm_model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
data_folder = 'sample_embedding_folder2' # Make sure this folder exists
try:
doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
print("System initialized successfully!")
# Your exact same CSS and examples
css_code = """
.gradio-container {
background-color: #daccdb;
}
button {
background-color: #927fc7;
color: black;
border: 1px solid black;
padding: 10px;
margin-right: 10px;
font-size: 16px;
font-weight: bold;
}
"""
EXAMPLES = [
"On which devices can the VIP and CSI2 modules operate simultaneously?",
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
"Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
]
interface = gr.Interface(
fn=doc_retrieval_gen.qa_infer_gradio,
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here", lines=3)],
allow_flagging='never',
examples=EXAMPLES,
cache_examples=False,
outputs=[
gr.Textbox(label="RESPONSE", lines=8),
gr.Textbox(label="RELATED QUERIES", lines=5)
],
css=css_code,
title="π€ TI E2E FORUM",
description="Ask technical questions and get answers based on the TI E2E knowledge base"
)
# Launch with public link for Spaces
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
except Exception as e:
print(f"Failed to initialize: {e}")
# Fallback simple interface
def fallback_response(query):
return "System initialization failed. Please check the logs.", ""
fallback_interface = gr.Interface(
fn=fallback_response,
inputs=[gr.Textbox(label="QUERY")],
outputs=[gr.Textbox(label="ERROR"), gr.Textbox(label="INFO")],
title="TI E2E FORUM - Initialization Error"
)
fallback_interface.launch(server_name="0.0.0.0", server_port=7860) |