File size: 11,328 Bytes
d6b82f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cce2c4
 
 
 
 
 
 
d6b82f5
 
 
 
 
 
9adf9a9
d6b82f5
 
 
3cce2c4
 
d6b82f5
 
 
3366453
d6b82f5
 
 
 
 
 
 
 
 
 
 
 
 
5321ee9
3cce2c4
5321ee9
 
 
 
 
 
 
 
 
d6b82f5
 
3cce2c4
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b82f5
 
 
 
 
 
 
 
3cce2c4
87ce197
de212d9
 
3cce2c4
87ce197
3cce2c4
 
 
 
 
d6b82f5
 
 
 
87ce197
 
6dfb8a2
3cce2c4
 
d6b82f5
 
3cce2c4
d6b82f5
 
 
 
 
 
 
 
 
 
3cce2c4
 
d6b82f5
 
 
 
 
 
 
 
 
 
3cce2c4
d6b82f5
 
3cce2c4
d6b82f5
 
 
3cce2c4
 
d6b82f5
3cce2c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b82f5
3cce2c4
 
d6b82f5
3cce2c4
 
 
d6b82f5
3cce2c4
 
 
d6b82f5
3cce2c4
 
 
 
 
d6b82f5
 
 
 
 
3cce2c4
 
d6b82f5
3cce2c4
 
 
d6b82f5
3cce2c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b82f5
3cce2c4
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b82f5
3cce2c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import multiprocessing
import concurrent.futures
from langchain_community.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from transformers import AutoModel, AutoTokenizer
import torch.nn.functional as F
import faiss
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
from datetime import datetime
import json
import gradio as gr
import re
from threading import Thread

class DocumentRetrievalAndGeneration:
    def __init__(self, embedding_model_name, lm_model_id, data_folder):
        self.all_splits = self.load_documents(data_folder)
        
        # Get token from HF Spaces environment
        hf_token = os.getenv('HF_TOKEN')
        print(f"Token found: {hf_token is not None}")
        
        self.embedding_tokenizer = AutoTokenizer.from_pretrained(embedding_model_name, token=hf_token)
        self.embedding_model = AutoModel.from_pretrained(embedding_model_name, token=hf_token)
        self.gpu_index = self.create_faiss_index()
        self.tokenizer, self.model = self.initialize_llm(lm_model_id)

    def load_documents(self, folder_path):
        loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
        documents = loader.load()
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
        all_splits = text_splitter.split_documents(documents)
        print('Length of documents:', len(documents))
        print("LEN of all_splits", len(all_splits))
        for i in range(min(3, len(all_splits))):
            print(all_splits[i].page_content[:200] + "...")
        return all_splits
        
    def encode_texts(self, texts):
        encoded_input = self.embedding_tokenizer(texts, padding=True, truncation=True, max_length=512, return_tensors='pt')
        with torch.no_grad():
            model_output = self.embedding_model(**encoded_input)
            embeddings = self.mean_pooling(model_output, encoded_input['attention_mask'])
            embeddings = F.normalize(embeddings, p=2, dim=1)
        return embeddings.cpu().numpy()

    def mean_pooling(self, model_output, attention_mask):
        token_embeddings = model_output[0]
        input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

    def create_faiss_index(self):
        all_texts = [split.page_content for split in self.all_splits]
    
        batch_size = 512  # Reduced for Spaces
        all_embeddings = []
        
        for i in range(0, len(all_texts), batch_size):
            batch_texts = all_texts[i:i+batch_size]
            batch_embeddings = self.encode_texts(batch_texts)
            all_embeddings.append(batch_embeddings)
            print(f"Processed batch {i//batch_size + 1}/{(len(all_texts) + batch_size - 1)//batch_size}")
        
        embeddings = np.vstack(all_embeddings)
        index = faiss.IndexFlatL2(embeddings.shape[1])
        index.add(embeddings)
        
        # Try GPU first, fallback to CPU if fails
        try:
            if torch.cuda.is_available():
                gpu_resource = faiss.StandardGpuResources()
                gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
                print("πŸš€ Using GPU for FAISS")
                return gpu_index
            else:
                print("πŸ’» Using CPU for FAISS")
                return index
        except Exception as e:
            print(f"GPU FAISS failed: {e}, using CPU")
            return index

    def initialize_llm(self, model_id):
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16
        )
        
        hf_token = os.getenv('HF_TOKEN')
        print(f"LLM Token found: {hf_token is not None}") 
        print(f"Token starts with: {hf_token[:10] if hf_token else 'None'}...")  
        
        tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
        
        # Handle pad_token for latest transformers
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            torch_dtype=torch.bfloat16,
            device_map="auto",
            quantization_config=quantization_config,
            token=hf_token
        )
        
        print(f"πŸ¦™ Model loaded on: {model.device}")
        return tokenizer, model

    def generate_response_with_timeout(self, input_ids, max_new_tokens=800):
        try:
            streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
            generate_kwargs = dict(
                input_ids=input_ids,
                max_new_tokens=max_new_tokens,
                do_sample=True,
                top_p=1.0,
                top_k=20,
                temperature=0.8,
                repetition_penalty=1.2,
                pad_token_id=self.tokenizer.eos_token_id,
                eos_token_id=self.tokenizer.eos_token_id,
                streamer=streamer,
            )
            
            thread = Thread(target=self.model.generate, kwargs=generate_kwargs)
            thread.start()
            
            generated_text = ""
            for new_text in streamer:
                generated_text += new_text
            
            thread.join()
            return generated_text
        except Exception as e:
            print(f"Error in generation: {str(e)}")
            return "Text generation process encountered an error"

    def query_and_generate_response(self, query):
        if not query.strip():
            return "Please enter a valid query", ""
            
        try:
            similarityThreshold = 1.0
            query_embedding = self.encode_texts([query])[0]
            distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
            print("Distance", distances, "indices", indices)
            
            content = ""
            for idx, distance in zip(indices[0], distances[0]):
                content += "-" * 50 + "\n"
                content += self.all_splits[idx].page_content + "\n"
                print(f"πŸ“„ Chunk {idx} (distance: {distance:.3f})")

            conversation = [
                {"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
                {"role": "user", "content": f"""
                I need you to answer my question and provide related information in a specific format.
                I have provided five relatable json files {content}, choose the most suitable chunks for answering the query.
                RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
                IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
                DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
                
                Here's my question:
                Query: {query}
                Solution==>
                """}
            ]
            
            input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt").to(self.model.device)
            
            start_time = datetime.now()
            generated_response = self.generate_response_with_timeout(input_ids)
            elapsed_time = datetime.now() - start_time

            print("Generated response:", generated_response)
            print("Time elapsed:", elapsed_time)

            solution_text = generated_response.strip()
            if "Solution:" in solution_text:
                solution_text = solution_text.split("Solution:", 1)[1].strip()

            # Post-processing to remove "assistant" prefix
            solution_text = re.sub(r'^assistant\s*', '', solution_text, flags=re.IGNORECASE)
            solution_text = solution_text.strip()

            return solution_text, content[:1000] + "..." if len(content) > 1000 else content
            
        except Exception as e:
            print(f"Error in query processing: {e}")
            return f"Error processing query: {str(e)}", ""

    def qa_infer_gradio(self, query):
        response = self.query_and_generate_response(query)
        return response

# Initialize the system
print("Initializing TI E2E Forum Assistant...")

embedding_model_name = 'sentence-transformers/all-MiniLM-L6-v2'  # More compatible model
lm_model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
data_folder = 'sample_embedding_folder2'  # Make sure this folder exists

try:
    doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
    print("System initialized successfully!")
    
    # Your exact same CSS and examples
    css_code = """
        .gradio-container {
            background-color: #daccdb;
        }
        button {
            background-color: #927fc7;
            color: black;
            border: 1px solid black;
            padding: 10px;
            margin-right: 10px;
            font-size: 16px;
            font-weight: bold;
        }
    """
    
    EXAMPLES = [
        "On which devices can the VIP and CSI2 modules operate simultaneously?", 
        "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?", 
        "Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
    ]

    interface = gr.Interface(
        fn=doc_retrieval_gen.qa_infer_gradio,
        inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here", lines=3)],
        allow_flagging='never',
        examples=EXAMPLES,
        cache_examples=False,
        outputs=[
            gr.Textbox(label="RESPONSE", lines=8),
            gr.Textbox(label="RELATED QUERIES", lines=5)
        ],
        css=css_code,
        title="πŸ€– TI E2E FORUM",
        description="Ask technical questions and get answers based on the TI E2E knowledge base"
    )

    # Launch with public link for Spaces
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False
    )
    
except Exception as e:
    print(f"Failed to initialize: {e}")
    
    # Fallback simple interface
    def fallback_response(query):
        return "System initialization failed. Please check the logs.", ""
    
    fallback_interface = gr.Interface(
        fn=fallback_response,
        inputs=[gr.Textbox(label="QUERY")],
        outputs=[gr.Textbox(label="ERROR"), gr.Textbox(label="INFO")],
        title="TI E2E FORUM - Initialization Error"
    )
    
    fallback_interface.launch(server_name="0.0.0.0", server_port=7860)