arjunanand13 commited on
Commit
3cce2c4
·
verified ·
1 Parent(s): de212d9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +151 -100
app.py CHANGED
@@ -1,7 +1,6 @@
1
  import os
2
  import multiprocessing
3
  import concurrent.futures
4
- # from langchain.document_loaders import TextLoader, DirectoryLoader
5
  from langchain_community.document_loaders import TextLoader, DirectoryLoader
6
  from langchain.text_splitter import RecursiveCharacterTextSplitter
7
  from transformers import AutoModel, AutoTokenizer
@@ -15,13 +14,17 @@ import json
15
  import gradio as gr
16
  import re
17
  from threading import Thread
18
- import os
19
 
20
  class DocumentRetrievalAndGeneration:
21
  def __init__(self, embedding_model_name, lm_model_id, data_folder):
22
  self.all_splits = self.load_documents(data_folder)
23
- self.embedding_tokenizer = AutoTokenizer.from_pretrained(embedding_model_name)
24
- self.embedding_model = AutoModel.from_pretrained(embedding_model_name)
 
 
 
 
 
25
  self.gpu_index = self.create_faiss_index()
26
  self.tokenizer, self.model = self.initialize_llm(lm_model_id)
27
 
@@ -32,8 +35,8 @@ class DocumentRetrievalAndGeneration:
32
  all_splits = text_splitter.split_documents(documents)
33
  print('Length of documents:', len(documents))
34
  print("LEN of all_splits", len(all_splits))
35
- for i in range(3):
36
- print(all_splits[i].page_content)
37
  return all_splits
38
 
39
  def encode_texts(self, texts):
@@ -52,7 +55,7 @@ class DocumentRetrievalAndGeneration:
52
  def create_faiss_index(self):
53
  all_texts = [split.page_content for split in self.all_splits]
54
 
55
- batch_size = 256
56
  all_embeddings = []
57
 
58
  for i in range(0, len(all_texts), batch_size):
@@ -64,9 +67,20 @@ class DocumentRetrievalAndGeneration:
64
  embeddings = np.vstack(all_embeddings)
65
  index = faiss.IndexFlatL2(embeddings.shape[1])
66
  index.add(embeddings)
67
- gpu_resource = faiss.StandardGpuResources()
68
- gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
69
- return gpu_index
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  def initialize_llm(self, model_id):
72
  quantization_config = BitsAndBytesConfig(
@@ -75,11 +89,17 @@ class DocumentRetrievalAndGeneration:
75
  bnb_4bit_quant_type="nf4",
76
  bnb_4bit_compute_dtype=torch.bfloat16
77
  )
 
78
  hf_token = os.getenv('HF_TOKEN')
79
- print(f"Token found: {hf_token is not None}")
80
  print(f"LLM Token found: {hf_token is not None}")
81
  print(f"Token starts with: {hf_token[:10] if hf_token else 'None'}...")
 
82
  tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
 
 
 
 
 
83
  model = AutoModelForCausalLM.from_pretrained(
84
  model_id,
85
  torch_dtype=torch.bfloat16,
@@ -87,9 +107,11 @@ class DocumentRetrievalAndGeneration:
87
  quantization_config=quantization_config,
88
  token=hf_token
89
  )
 
 
90
  return tokenizer, model
91
 
92
- def generate_response_with_timeout(self, input_ids, max_new_tokens=1000):
93
  try:
94
  streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
95
  generate_kwargs = dict(
@@ -100,7 +122,8 @@ class DocumentRetrievalAndGeneration:
100
  top_k=20,
101
  temperature=0.8,
102
  repetition_penalty=1.2,
103
- eos_token_id=[128001, 128008, 128009],
 
104
  streamer=streamer,
105
  )
106
 
@@ -111,109 +134,137 @@ class DocumentRetrievalAndGeneration:
111
  for new_text in streamer:
112
  generated_text += new_text
113
 
 
114
  return generated_text
115
  except Exception as e:
116
- print(f"Error in generate_response_with_timeout: {str(e)}")
117
  return "Text generation process encountered an error"
118
 
119
  def query_and_generate_response(self, query):
120
- similarityThreshold = 1
121
- query_embedding = self.encode_texts([query])[0]
122
- distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
123
- print("Distance", distances, "indices", indices)
124
- content = ""
125
- filtered_results = []
126
- for idx, distance in zip(indices[0], distances[0]):
127
- if distance <= similarityThreshold:
128
- filtered_results.append(idx)
129
- for i in filtered_results:
130
- print(self.all_splits[i].page_content)
131
- content += "-" * 50 + "\n"
132
- content += self.all_splits[idx].page_content + "\n"
133
- print("CHUNK", idx)
134
- print("Distance:", distance)
135
- print("indices:", indices)
136
- print(self.all_splits[idx].page_content)
137
- print("############################")
138
-
139
- conversation = [
140
- {"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
141
- {"role": "user", "content": f"""
142
- I need you to answer my question and provide related information in a specific format.
143
- I have provided five relatable json files {content}, choose the most suitable chunks for answering the query.
144
- RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
145
- IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
146
- DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
147
 
148
- Here's my question:
149
- Query: {query}
150
- Solution==>
151
- """}
152
- ]
153
- #Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
154
- input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt").to(self.model.device)
155
-
156
- start_time = datetime.now()
157
- generated_response = self.generate_response_with_timeout(input_ids)
158
- elapsed_time = datetime.now() - start_time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
 
160
- print("Generated response:", generated_response)
161
- print("Time elapsed:", elapsed_time)
162
- print("Device in use:", self.model.device)
163
 
164
- solution_text = generated_response.strip()
165
- if "Solution:" in solution_text:
166
- solution_text = solution_text.split("Solution:", 1)[1].strip()
167
 
168
- # Post-processing to remove "assistant" prefix
169
- solution_text = re.sub(r'^assistant\s*', '', solution_text, flags=re.IGNORECASE)
170
- solution_text = solution_text.strip()
171
 
172
- return solution_text, content
 
 
 
 
173
 
174
  def qa_infer_gradio(self, query):
175
  response = self.query_and_generate_response(query)
176
  return response
177
 
178
- if __name__ == "__main__":
179
- embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
180
- lm_model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
181
- data_folder = 'sample_embedding_folder2'
182
 
183
- doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
 
 
184
 
185
- def launch_interface():
186
- css_code = """
187
- .gradio-container {
188
- background-color: #daccdb;
189
- }
190
- button {
191
- background-color: #927fc7;
192
- color: black;
193
- border: 1px solid black;
194
- padding: 10px;
195
- margin-right: 10px;
196
- font-size: 16px;
197
- font-weight: bold;
198
- }
199
- """
200
- EXAMPLES = [
201
- "On which devices can the VIP and CSI2 modules operate simultaneously?",
202
- "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
203
- "Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
204
- ]
205
-
206
- interface = gr.Interface(
207
- fn=doc_retrieval_gen.qa_infer_gradio,
208
- inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
209
- allow_flagging='never',
210
- examples=EXAMPLES,
211
- cache_examples=False,
212
- outputs=[gr.Textbox(label="RESPONSE"), gr.Textbox(label="RELATED QUERIES")],
213
- css=css_code,
214
- title="TI E2E FORUM"
215
- )
216
 
217
- interface.launch(debug=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
218
 
219
- launch_interface()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
  import multiprocessing
3
  import concurrent.futures
 
4
  from langchain_community.document_loaders import TextLoader, DirectoryLoader
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
6
  from transformers import AutoModel, AutoTokenizer
 
14
  import gradio as gr
15
  import re
16
  from threading import Thread
 
17
 
18
  class DocumentRetrievalAndGeneration:
19
  def __init__(self, embedding_model_name, lm_model_id, data_folder):
20
  self.all_splits = self.load_documents(data_folder)
21
+
22
+ # Get token from HF Spaces environment
23
+ hf_token = os.getenv('HF_TOKEN')
24
+ print(f"Token found: {hf_token is not None}")
25
+
26
+ self.embedding_tokenizer = AutoTokenizer.from_pretrained(embedding_model_name, token=hf_token)
27
+ self.embedding_model = AutoModel.from_pretrained(embedding_model_name, token=hf_token)
28
  self.gpu_index = self.create_faiss_index()
29
  self.tokenizer, self.model = self.initialize_llm(lm_model_id)
30
 
 
35
  all_splits = text_splitter.split_documents(documents)
36
  print('Length of documents:', len(documents))
37
  print("LEN of all_splits", len(all_splits))
38
+ for i in range(min(3, len(all_splits))):
39
+ print(all_splits[i].page_content[:200] + "...")
40
  return all_splits
41
 
42
  def encode_texts(self, texts):
 
55
  def create_faiss_index(self):
56
  all_texts = [split.page_content for split in self.all_splits]
57
 
58
+ batch_size = 512 # Reduced for Spaces
59
  all_embeddings = []
60
 
61
  for i in range(0, len(all_texts), batch_size):
 
67
  embeddings = np.vstack(all_embeddings)
68
  index = faiss.IndexFlatL2(embeddings.shape[1])
69
  index.add(embeddings)
70
+
71
+ # Try GPU first, fallback to CPU if fails
72
+ try:
73
+ if torch.cuda.is_available():
74
+ gpu_resource = faiss.StandardGpuResources()
75
+ gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
76
+ print("🚀 Using GPU for FAISS")
77
+ return gpu_index
78
+ else:
79
+ print("💻 Using CPU for FAISS")
80
+ return index
81
+ except Exception as e:
82
+ print(f"GPU FAISS failed: {e}, using CPU")
83
+ return index
84
 
85
  def initialize_llm(self, model_id):
86
  quantization_config = BitsAndBytesConfig(
 
89
  bnb_4bit_quant_type="nf4",
90
  bnb_4bit_compute_dtype=torch.bfloat16
91
  )
92
+
93
  hf_token = os.getenv('HF_TOKEN')
 
94
  print(f"LLM Token found: {hf_token is not None}")
95
  print(f"Token starts with: {hf_token[:10] if hf_token else 'None'}...")
96
+
97
  tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
98
+
99
+ # Handle pad_token for latest transformers
100
+ if tokenizer.pad_token is None:
101
+ tokenizer.pad_token = tokenizer.eos_token
102
+
103
  model = AutoModelForCausalLM.from_pretrained(
104
  model_id,
105
  torch_dtype=torch.bfloat16,
 
107
  quantization_config=quantization_config,
108
  token=hf_token
109
  )
110
+
111
+ print(f"🦙 Model loaded on: {model.device}")
112
  return tokenizer, model
113
 
114
+ def generate_response_with_timeout(self, input_ids, max_new_tokens=800):
115
  try:
116
  streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
117
  generate_kwargs = dict(
 
122
  top_k=20,
123
  temperature=0.8,
124
  repetition_penalty=1.2,
125
+ pad_token_id=self.tokenizer.eos_token_id,
126
+ eos_token_id=self.tokenizer.eos_token_id,
127
  streamer=streamer,
128
  )
129
 
 
134
  for new_text in streamer:
135
  generated_text += new_text
136
 
137
+ thread.join()
138
  return generated_text
139
  except Exception as e:
140
+ print(f"Error in generation: {str(e)}")
141
  return "Text generation process encountered an error"
142
 
143
  def query_and_generate_response(self, query):
144
+ if not query.strip():
145
+ return "Please enter a valid query", ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
 
147
+ try:
148
+ similarityThreshold = 1.0
149
+ query_embedding = self.encode_texts([query])[0]
150
+ distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
151
+ print("Distance", distances, "indices", indices)
152
+
153
+ content = ""
154
+ for idx, distance in zip(indices[0], distances[0]):
155
+ content += "-" * 50 + "\n"
156
+ content += self.all_splits[idx].page_content + "\n"
157
+ print(f"📄 Chunk {idx} (distance: {distance:.3f})")
158
+
159
+ conversation = [
160
+ {"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
161
+ {"role": "user", "content": f"""
162
+ I need you to answer my question and provide related information in a specific format.
163
+ I have provided five relatable json files {content}, choose the most suitable chunks for answering the query.
164
+ RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
165
+ IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
166
+ DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
167
+
168
+ Here's my question:
169
+ Query: {query}
170
+ Solution==>
171
+ """}
172
+ ]
173
+
174
+ input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt").to(self.model.device)
175
+
176
+ start_time = datetime.now()
177
+ generated_response = self.generate_response_with_timeout(input_ids)
178
+ elapsed_time = datetime.now() - start_time
179
 
180
+ print("Generated response:", generated_response)
181
+ print("Time elapsed:", elapsed_time)
 
182
 
183
+ solution_text = generated_response.strip()
184
+ if "Solution:" in solution_text:
185
+ solution_text = solution_text.split("Solution:", 1)[1].strip()
186
 
187
+ # Post-processing to remove "assistant" prefix
188
+ solution_text = re.sub(r'^assistant\s*', '', solution_text, flags=re.IGNORECASE)
189
+ solution_text = solution_text.strip()
190
 
191
+ return solution_text, content[:1000] + "..." if len(content) > 1000 else content
192
+
193
+ except Exception as e:
194
+ print(f"Error in query processing: {e}")
195
+ return f"Error processing query: {str(e)}", ""
196
 
197
  def qa_infer_gradio(self, query):
198
  response = self.query_and_generate_response(query)
199
  return response
200
 
201
+ # Initialize the system
202
+ print("Initializing TI E2E Forum Assistant...")
 
 
203
 
204
+ embedding_model_name = 'sentence-transformers/all-MiniLM-L6-v2' # More compatible model
205
+ lm_model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
206
+ data_folder = 'sample_embedding_folder2' # Make sure this folder exists
207
 
208
+ try:
209
+ doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
210
+ print("System initialized successfully!")
211
+
212
+ # Your exact same CSS and examples
213
+ css_code = """
214
+ .gradio-container {
215
+ background-color: #daccdb;
216
+ }
217
+ button {
218
+ background-color: #927fc7;
219
+ color: black;
220
+ border: 1px solid black;
221
+ padding: 10px;
222
+ margin-right: 10px;
223
+ font-size: 16px;
224
+ font-weight: bold;
225
+ }
226
+ """
227
+
228
+ EXAMPLES = [
229
+ "On which devices can the VIP and CSI2 modules operate simultaneously?",
230
+ "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
231
+ "Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
232
+ ]
 
 
 
 
 
 
233
 
234
+ interface = gr.Interface(
235
+ fn=doc_retrieval_gen.qa_infer_gradio,
236
+ inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here", lines=3)],
237
+ allow_flagging='never',
238
+ examples=EXAMPLES,
239
+ cache_examples=False,
240
+ outputs=[
241
+ gr.Textbox(label="RESPONSE", lines=8),
242
+ gr.Textbox(label="RELATED QUERIES", lines=5)
243
+ ],
244
+ css=css_code,
245
+ title="🤖 TI E2E FORUM",
246
+ description="Ask technical questions and get answers based on the TI E2E knowledge base"
247
+ )
248
 
249
+ # Launch with public link for Spaces
250
+ interface.launch(
251
+ server_name="0.0.0.0",
252
+ server_port=7860,
253
+ share=False
254
+ )
255
+
256
+ except Exception as e:
257
+ print(f"Failed to initialize: {e}")
258
+
259
+ # Fallback simple interface
260
+ def fallback_response(query):
261
+ return "System initialization failed. Please check the logs.", ""
262
+
263
+ fallback_interface = gr.Interface(
264
+ fn=fallback_response,
265
+ inputs=[gr.Textbox(label="QUERY")],
266
+ outputs=[gr.Textbox(label="ERROR"), gr.Textbox(label="INFO")],
267
+ title="TI E2E FORUM - Initialization Error"
268
+ )
269
+
270
+ fallback_interface.launch(server_name="0.0.0.0", server_port=7860)