File size: 10,316 Bytes
5ef4c3f
 
 
 
 
 
 
 
79e78be
5ef4c3f
 
 
 
79e78be
5ef4c3f
f7c2e92
 
40b97d8
f7c2e92
 
40b97d8
f7c2e92
 
5ef4c3f
 
 
28bcecc
5ef4c3f
ce5afd9
79e78be
 
 
 
 
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28bcecc
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28bcecc
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc17d9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65b22f3
f325eee
79e78be
07a5f25
 
74efc30
28bcecc
79e78be
 
 
5ef4c3f
79e78be
 
 
 
 
 
 
 
5ef4c3f
 
70f1aa3
5ef4c3f
74efc30
 
 
 
 
 
5ef4c3f
 
70f1aa3
5ef4c3f
 
70f1aa3
5ef4c3f
 
 
 
 
 
70f1aa3
 
069fff8
 
 
 
 
612e469
70f1aa3
 
 
 
 
 
 
 
5ef4c3f
 
74efc30
5ef4c3f
 
 
 
 
 
 
1678054
70f1aa3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import gradio as gr
import io
import numpy as np
import torch
from decord import cpu, VideoReader, bridge
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig


MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16


DELAY_REASONS = {
    "Step 1": ["Delay in Bead Insertion","Lack of raw material"],
    "Step 2": ["Inner Liner Adjustment by Technician","Person rebuilding defective Tire Sections"],
    "Step 3": ["Manual Adjustment in Ply1 apply","Technician repairing defective Tire Sections"],
    "Step 4": ["Delay in Bead set","Lack of raw material"],
    "Step 5": ["Delay in Turnup","Lack of raw material"],
    "Step 6": ["Person Repairing sidewall","Person rebuilding defective Tire Sections"],
    "Step 7": ["Delay in sidewall stitching","Lack of raw material"],
    "Step 8": ["No person available to load Carcass","No person available to collect tire"]
}

def load_video(video_data, strategy='chat'):
    """Loads and processes video data into a format suitable for model input."""
    bridge.set_bridge('torch')
    num_frames = 24
    
    if isinstance(video_data, str): 
        decord_vr = VideoReader(video_data, ctx=cpu(0))
    else:  
        decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
    
    frame_id_list = []
    total_frames = len(decord_vr)
    timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
    max_second = round(max(timestamps)) + 1
    
    for second in range(max_second):
        closest_num = min(timestamps, key=lambda x: abs(x - second))
        index = timestamps.index(closest_num)
        frame_id_list.append(index)
        if len(frame_id_list) >= num_frames:
            break

    video_data = decord_vr.get_batch(frame_id_list)
    video_data = video_data.permute(3, 0, 1, 2)
    return video_data

def load_model():
    """Loads the pre-trained model and tokenizer with quantization configurations."""
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=TORCH_TYPE,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4"
    )
    
    tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_PATH,
        torch_dtype=TORCH_TYPE,
        trust_remote_code=True,
        quantization_config=quantization_config,
        device_map="auto"
    ).eval()
    
    return model, tokenizer

def predict(prompt, video_data, temperature, model, tokenizer):
    """Generates predictions based on the video and textual prompt."""
    video = load_video(video_data, strategy='chat')
    
    inputs = model.build_conversation_input_ids(
        tokenizer=tokenizer,
        query=prompt,
        images=[video],
        history=[],
        template_version='chat'
    )
    
    inputs = {
        'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
        'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
        'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
        'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
    }
    
    gen_kwargs = {
        "max_new_tokens": 2048,
        "pad_token_id": 128002,
        "top_k": 1,
        "do_sample": False,
        "top_p": 0.1,
        "temperature": temperature,
    }
    
    with torch.no_grad():
        outputs = model.generate(**inputs, **gen_kwargs)
        outputs = outputs[:, inputs['input_ids'].shape[1]:]
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    return response

def get_analysis_prompt(step_number, possible_reasons):
    """
    Constructs a robust prompt for analyzing delay reasons based on the selected manufacturing step.
    Args:
        step_number (int): The manufacturing step being analyzed.
        possible_reasons (list): A list of possible delay reasons for this step.
    Returns:
        str: A highly detailed and robust analysis prompt tailored to the given step and reasons.
    """
    return f"""
    You are a highly advanced AI system specializing in the analysis of tire manufacturing processes to identify and diagnose production delays. You are tasked with analyzing video footage from Step {step_number}, where a delay has been detected. Your goal is to determine the most accurate cause of the delay based on the visual evidence.

    ### Task Context:
    - Manufacturing Step: {step_number}
    - Delay Detected: Yes
    - Possible Reasons for Delay: {', '.join(possible_reasons)}

    ### Required Analysis:
    Carefully examine the video footage frame by frame, focusing on the following aspects:

    #### Technician Presence and Role:
    - **Technician Availability:**
        - Determine if a technician is visibly present during the step.
        - If no technician is present, classify absence as a possible delay cause.
    - **Technician Actions:**
        - If a technician is present, observe their actions:
            - Are they collecting or loading a carcass? Ensure the task is executed efficiently.
            - Are they repairing the inner liner or sidewall? This indicates an issue with material application or alignment.
            - Are they manually adjusting components or reworking parts? This suggests equipment malfunction or material misalignment.

    #### Material and Process Observations:
    - Identify signs of material defects such as:
        - **Misaligned layers**: Visualize if any tire layer is improperly positioned.
        - **Damaged materials**: Check for tears, wrinkles, or missing parts.
        - **Incomplete processes**: Confirm whether all steps were executed correctly (e.g., liner application, bead insertion).
    - Look for excessive manual handling, which might indicate inadequate machine performance.

    #### Equipment and Machine Performance:
    - Evaluate machine operation for:
        - Pauses, stutters, or complete stoppages.
        - Improper alignment during automatic processes.
        - Speed inconsistencies compared to the standard time.

    #### Task-Specific Indicators:
    - **Carcass Handling**: Ensure technicians are promptly collecting and loading carcasses when required.
    - **Inner Liner Repair**: Note if technicians are involved in patching or reapplying the inner liner.
    - **Sidewall Repair**: Identify if technicians are working to fix damaged or misaligned sidewalls.

    ### Output Requirements:
    Your analysis must be detailed and structured in the following format:
    1. **Selected Reason**: [State the most likely reason for the delay from the provided options.]
    2. **Visual Evidence**: [Describe specific frames, activities, or anomalies that support your conclusion.]
    3. **Reasoning**: [Provide a thorough explanation linking visual observations to the selected reason.]
    4. **Alternative Analysis**: [Explain why other reasons are less likely, citing specific evidence or its absence.]
    5. **Recommendations**: [Suggest corrective actions to address the identified delay cause, such as equipment maintenance, technician training, or material quality checks.]

    ### Key Considerations:
    - **Observe Frame-by-Frame**: Carefully analyze each frame to capture subtleties, such as technician actions, material defects, or machine behavior.
    - **Focus on Visual Evidence**: Base your analysis entirely on observable details from the footage. Avoid unverified assumptions.
    - **Evaluate Standard Times**: Compare observed task durations with the standard time for this step. Identify where delays occurred and why.

    ### Note:
    - Prioritize identifying technician involvement in carcass handling, inner liner, or sidewall repair, as these are critical delay causes.
    - Highlight any deviation from expected machine or process performance.
    """


# Load model globally
model, tokenizer = load_model()

def inference(video, step_number):
    """Analyzes video to predict the most likely cause of delay in the selected manufacturing step."""
    try:
        if not video:
            return "Please upload a video first."
        
        possible_reasons = DELAY_REASONS[step_number]
        prompt = get_analysis_prompt(step_number, possible_reasons)
        temperature = 0.8
        response = predict(prompt, video, temperature, model, tokenizer)
        
        return response
    except Exception as e:
        return f"An error occurred during analysis: {str(e)}"

def create_interface():
    """Creates the Gradio interface for the Manufacturing Delay Analysis System with examples."""
    with gr.Blocks() as demo:
        gr.Markdown("""
        # Manufacturing Delay Analysis System
        Upload a video of the manufacturing step and select the step number. 
        The system will analyze the video and determine the most likely cause of delay.
        """)
        
        with gr.Row():
            with gr.Column():
                video = gr.Video(label="Upload Manufacturing Video", sources=["upload"])
                step_number = gr.Dropdown(
                    choices=list(DELAY_REASONS.keys()),
                    label="Manufacturing Step"
                )
                analyze_btn = gr.Button("Analyze Delay", variant="primary")
            
            with gr.Column():
                output = gr.Textbox(label="Analysis Result", lines=10)
        
        # Add examples
        examples = [
            ["7838_step2_2_eval.mp4", "Step 2"],
            ["7838_step6_2_eval.mp4", "Step 6"],
            ["7838_step8_1_eval.mp4", "Step 8"],
            ["7993_step6_3_eval.mp4", "Step 6"],
            ["7993_step8_3_eval.mp4", "Step 8"]
            
        ]
        
        gr.Examples(
            examples=examples,
            inputs=[video, step_number],
            cache_examples=False
        )
        
        analyze_btn.click(
            fn=inference,
            inputs=[video, step_number],
            outputs=[output]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.queue().launch(share=True)