File size: 6,174 Bytes
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
import io
import numpy as np
import torch
from decord import cpu, VideoReader, bridge
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig
import json

# Model Configuration
MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16

# Define delay reasons for each step
DELAY_REASONS = {
    "Step 1": ["No raw material available", "Person repatching the tire"],
    "Step 2": ["Person repatching the tire", "Lack of raw material"],
    "Step 3": ["Person repatching the tire", "Lack of raw material"],
    "Step 4": ["Person repatching the tire", "Lack of raw material"],
    "Step 5": ["Person repatching the tire", "Lack of raw material"],
    "Step 6": ["Person repatching the tire", "Lack of raw material"],
    "Step 7": ["Person repatching the tire", "Lack of raw material"],
    "Step 8": ["No person available to collect tire", "Person repatching the tire"]
}

def load_video(video_data, strategy='chat'):
    bridge.set_bridge('torch')
    mp4_stream = video_data
    num_frames = 24
    decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0))
    
    frame_id_list = []
    total_frames = len(decord_vr)
    timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
    max_second = round(max(timestamps)) + 1
    
    for second in range(max_second):
        closest_num = min(timestamps, key=lambda x: abs(x - second))
        index = timestamps.index(closest_num)
        frame_id_list.append(index)
        if len(frame_id_list) >= num_frames:
            break

    video_data = decord_vr.get_batch(frame_id_list)
    video_data = video_data.permute(3, 0, 1, 2)
    return video_data

def load_model():
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=TORCH_TYPE,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4"
    )
    
    tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_PATH,
        torch_dtype=TORCH_TYPE,
        trust_remote_code=True,
        quantization_config=quantization_config,
        device_map="auto"
    ).eval()
    
    return model, tokenizer

def predict(prompt, video_data, temperature, model, tokenizer):
    video = load_video(video_data, strategy='chat')
    
    inputs = model.build_conversation_input_ids(
        tokenizer=tokenizer,
        query=prompt,
        images=[video],
        history=[],
        template_version='chat'
    )
    
    inputs = {
        'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
        'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
        'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
        'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
    }
    
    gen_kwargs = {
        "max_new_tokens": 2048,
        "pad_token_id": 128002,
        "top_k": 1,
        "do_sample": False,
        "top_p": 0.1,
        "temperature": temperature,
    }
    
    with torch.no_grad():
        outputs = model.generate(**inputs, **gen_kwargs)
        outputs = outputs[:, inputs['input_ids'].shape[1]:]
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    return response

def get_analysis_prompt(step_number, possible_reasons):
    return f"""Analyze the video of Step {step_number} in the tire manufacturing process.
    
Possible delay reasons for this step are:
{', '.join(possible_reasons)}

Based on the video evidence, determine which of these reasons best explains the delay.
Please provide:
1. Your chosen reason from the list above
2. Specific visual evidence supporting this choice
3. Brief explanation of why other reasons are less likely

Focus your analysis on visual cues that support your conclusion."""

def inference(video, step_number, selected_reason):
    if not video:
        return "Please upload a video first."
    
    try:
        model, tokenizer = load_model()
        video_data = video.read()
        
        # Get possible reasons for the selected step
        possible_reasons = DELAY_REASONS[step_number]
        
        # Generate the analysis prompt
        prompt = get_analysis_prompt(step_number, possible_reasons)
        
        # Get model prediction
        temperature = 0.8
        response = predict(prompt, video_data, temperature, model, tokenizer)
        
        return response
        
    except Exception as e:
        return f"An error occurred: {str(e)}"

def update_reasons(step):
    """Update the dropdown choices based on the selected step"""
    return gr.Dropdown(choices=DELAY_REASONS[step])

# Gradio Interface
def create_interface():
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                video = gr.Video(label="Upload Manufacturing Video", sources=["upload"])
                step_number = gr.Dropdown(
                    choices=list(DELAY_REASONS.keys()),
                    label="Manufacturing Step",
                    value="Step 1"
                )
                reason = gr.Dropdown(
                    choices=DELAY_REASONS["Step 1"],
                    label="Select Delay Reason",
                    value=DELAY_REASONS["Step 1"][0]
                )
                analyze_btn = gr.Button("Analyze Delay", variant="primary")
            
            with gr.Column():
                output = gr.Textbox(label="Analysis Result", lines=10)
        
        # Update reasons when step changes
        step_number.change(
            fn=update_reasons,
            inputs=[step_number],
            outputs=[reason]
        )
        
        # Trigger analysis when button is clicked
        analyze_btn.click(
            fn=inference,
            inputs=[video, step_number, reason],
            outputs=[output]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch()