File size: 7,701 Bytes
5ef4c3f
 
 
 
 
 
 
 
79e78be
5ef4c3f
 
 
 
79e78be
5ef4c3f
f7c2e92
 
40b97d8
f7c2e92
 
40b97d8
f7c2e92
 
5ef4c3f
 
 
28bcecc
5ef4c3f
ce5afd9
79e78be
 
 
 
 
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28bcecc
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28bcecc
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7a17c5
59276a1
b7a17c5
59276a1
b7a17c5
 
59276a1
b7a17c5
 
59276a1
b7a17c5
f325eee
59276a1
 
 
 
 
 
 
 
f325eee
 
59276a1
 
 
 
 
 
b7a17c5
74efc30
53727a4
65b22f3
f325eee
79e78be
07a5f25
 
74efc30
28bcecc
79e78be
 
 
5ef4c3f
79e78be
 
 
 
 
 
 
 
5ef4c3f
 
70f1aa3
5ef4c3f
74efc30
 
 
 
 
 
5ef4c3f
 
70f1aa3
5ef4c3f
 
70f1aa3
5ef4c3f
 
 
 
 
 
70f1aa3
 
069fff8
 
 
 
 
612e469
70f1aa3
 
 
 
 
 
 
 
5ef4c3f
 
74efc30
5ef4c3f
 
 
 
 
 
 
1678054
70f1aa3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gradio as gr
import io
import numpy as np
import torch
from decord import cpu, VideoReader, bridge
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig


MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16


DELAY_REASONS = {
    "Step 1": ["Delay in Bead Insertion","Lack of raw material"],
    "Step 2": ["Inner Liner Adjustment by Technician","Person rebuilding defective Tire Sections"],
    "Step 3": ["Manual Adjustment in Ply1 apply","Technician repairing defective Tire Sections"],
    "Step 4": ["Delay in Bead set","Lack of raw material"],
    "Step 5": ["Delay in Turnup","Lack of raw material"],
    "Step 6": ["Person Repairing sidewall","Person rebuilding defective Tire Sections"],
    "Step 7": ["Delay in sidewall stitching","Lack of raw material"],
    "Step 8": ["No person available to load Carcass","No person available to collect tire"]
}

def load_video(video_data, strategy='chat'):
    """Loads and processes video data into a format suitable for model input."""
    bridge.set_bridge('torch')
    num_frames = 24
    
    if isinstance(video_data, str): 
        decord_vr = VideoReader(video_data, ctx=cpu(0))
    else:  
        decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
    
    frame_id_list = []
    total_frames = len(decord_vr)
    timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
    max_second = round(max(timestamps)) + 1
    
    for second in range(max_second):
        closest_num = min(timestamps, key=lambda x: abs(x - second))
        index = timestamps.index(closest_num)
        frame_id_list.append(index)
        if len(frame_id_list) >= num_frames:
            break

    video_data = decord_vr.get_batch(frame_id_list)
    video_data = video_data.permute(3, 0, 1, 2)
    return video_data

def load_model():
    """Loads the pre-trained model and tokenizer with quantization configurations."""
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=TORCH_TYPE,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4"
    )
    
    tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_PATH,
        torch_dtype=TORCH_TYPE,
        trust_remote_code=True,
        quantization_config=quantization_config,
        device_map="auto"
    ).eval()
    
    return model, tokenizer

def predict(prompt, video_data, temperature, model, tokenizer):
    """Generates predictions based on the video and textual prompt."""
    video = load_video(video_data, strategy='chat')
    
    inputs = model.build_conversation_input_ids(
        tokenizer=tokenizer,
        query=prompt,
        images=[video],
        history=[],
        template_version='chat'
    )
    
    inputs = {
        'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
        'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
        'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
        'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
    }
    
    gen_kwargs = {
        "max_new_tokens": 2048,
        "pad_token_id": 128002,
        "top_k": 1,
        "do_sample": False,
        "top_p": 0.1,
        "temperature": temperature,
    }
    
    with torch.no_grad():
        outputs = model.generate(**inputs, **gen_kwargs)
        outputs = outputs[:, inputs['input_ids'].shape[1]:]
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    return response

def get_analysis_prompt(step_number, possible_reasons):
    """
    Constructs a concise and robust prompt for analyzing delay reasons based on the selected manufacturing step.
    Args:
        step_number (int): The manufacturing step being analyzed.
        possible_reasons (list): A list of possible delay reasons for this step.
    Returns:
        str: A tailored analysis prompt.
    """
    return f"""
    You are an advanced AI system specializing in analyzing manufacturing processes. Your task is to review video footage from Step {step_number} of a tire manufacturing process and determine the cause of an observed delay.

    ### Required Analysis:
    1. Carefully observe the video to identify any visual cues indicating a delay.
    2. If no technician is visible, absence might be the cause.
    3. If a technician is present, analyze their actions:
       - Are they handling or loading carcasses efficiently?
       - Are they repairing the inner liner or sidewall?
       - Are they adjusting components or fixing alignment issues?
    4. Look for signs of material misalignment, damage, or excessive manual handling.
    5. Identify any machine pauses, malfunctions, or inconsistencies in operation.

    ### Output Requirements:
    - **Selected Reason**: State the most likely delay cause.
    - **Visual Evidence**: Describe specific observations supporting your conclusion.
    - **Reasoning**: Explain why this reason aligns with the evidence.
    - **Alternative Analysis**: Briefly note why other reasons are less likely.

    Focus on visual evidence and avoid assumptions not supported by the footage.
    """




# Load model globally
model, tokenizer = load_model()

def inference(video, step_number):
    """Analyzes video to predict the most likely cause of delay in the selected manufacturing step."""
    try:
        if not video:
            return "Please upload a video first."
        
        possible_reasons = DELAY_REASONS[step_number]
        prompt = get_analysis_prompt(step_number, possible_reasons)
        temperature = 0.8
        response = predict(prompt, video, temperature, model, tokenizer)
        
        return response
    except Exception as e:
        return f"An error occurred during analysis: {str(e)}"

def create_interface():
    """Creates the Gradio interface for the Manufacturing Delay Analysis System with examples."""
    with gr.Blocks() as demo:
        gr.Markdown("""
        # Manufacturing Delay Analysis System
        Upload a video of the manufacturing step and select the step number. 
        The system will analyze the video and determine the most likely cause of delay.
        """)
        
        with gr.Row():
            with gr.Column():
                video = gr.Video(label="Upload Manufacturing Video", sources=["upload"])
                step_number = gr.Dropdown(
                    choices=list(DELAY_REASONS.keys()),
                    label="Manufacturing Step"
                )
                analyze_btn = gr.Button("Analyze Delay", variant="primary")
            
            with gr.Column():
                output = gr.Textbox(label="Analysis Result", lines=10)
        
        # Add examples
        examples = [
            ["7838_step2_2_eval.mp4", "Step 2"],
            ["7838_step6_2_eval.mp4", "Step 6"],
            ["7838_step8_1_eval.mp4", "Step 8"],
            ["7993_step6_3_eval.mp4", "Step 6"],
            ["7993_step8_3_eval.mp4", "Step 8"]
            
        ]
        
        gr.Examples(
            examples=examples,
            inputs=[video, step_number],
            cache_examples=False
        )
        
        analyze_btn.click(
            fn=inference,
            inputs=[video, step_number],
            outputs=[output]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.queue().launch(share=True)