File size: 8,389 Bytes
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
aaa7f8d
a01dc67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef4c3f
 
28bcecc
5ef4c3f
ce5afd9
79e78be
 
 
 
 
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28bcecc
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28bcecc
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a68fa58
 
 
 
 
 
 
 
 
 
 
38f0768
 
aaa7f8d
d20364e
79e78be
 
 
5ef4c3f
a68fa58
79e78be
aaa7f8d
79e78be
aaa7f8d
79e78be
 
5ef4c3f
 
d20364e
5ef4c3f
74efc30
d20364e
43eb4dd
d20364e
74efc30
 
5ef4c3f
 
70f1aa3
5ef4c3f
d20364e
70f1aa3
5ef4c3f
d20364e
5ef4c3f
 
 
 
43eb4dd
d20364e
 
a68fa58
d20364e
43eb4dd
 
 
 
5ef4c3f
 
43eb4dd
5ef4c3f
 
 
 
 
 
 
d20364e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
import io
import numpy as np
import torch
from decord import cpu, VideoReader, bridge
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig

MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16


def get_step_info(step_name):
    """Returns detailed information about a manufacturing step."""
    step_details = {
        "Step 1": {
            "Name": "Bead Insertion",
            "Standard Time": "4 seconds",
            "Analysis": "Observe the bead placement process. If the insertion exceeds 4 seconds, identify potential issues such as missing beads, technician errors, or machinery malfunction."
        },
        "Step 2": {
            "Name": "Inner Liner Apply",
            "Standard Time": "4 seconds",
            "Analysis": "Check for manual intervention during the inner layer application. If adjustment is required, it may indicate improper alignment or issues with the layer material."
        },
        "Step 3": {
            "Name": "Ply1 Apply",
            "Standard Time": "4 seconds",
            "Analysis": "Determine if the technician is manually adjusting the first ply. Manual intervention might suggest improper ply placement or machine misalignment."
        },
        "Step 4": {
            "Name": "Bead Set",
            "Standard Time": "8 seconds",
            "Analysis": "Observe the bead setting process. Delays may result from bead misalignment, machine pauses, or lack of technician involvement."
        },
        "Step 5": {
            "Name": "Turnup",
            "Standard Time": "4 seconds",
            "Analysis": "Examine the turnup step for any technician involvement or pauses in machine operation. Reasons for delays might include material misalignment or equipment issues."
        },
        "Step 6": {
            "Name": "Sidewall Apply",
            "Standard Time": "14 seconds",
            "Analysis": "If a technician is repairing the sidewall, this may indicate material damage or improper initial application. Look for signs of excessive manual handling."
        },
        "Step 7": {
            "Name": "Sidewall Stitching",
            "Standard Time": "5 seconds",
            "Analysis": "Observe the stitching process. Delays could occur due to machine speed inconsistencies or technician intervention for correction."
        },
        "Step 8": {
            "Name": "Carcass Unload",
            "Standard Time": "7 seconds",
            "Analysis": "Ensure a technician is present for the carcass unload. If absent, note their return time and identify potential reasons for their absence."
        }
    }
    
    return step_details.get(step_name, {"Error": "Invalid step name. Please provide a valid step number."})


def load_video(video_data, strategy='chat'):
    """Loads and processes video data into a format suitable for model input."""
    bridge.set_bridge('torch')
    num_frames = 24
    
    if isinstance(video_data, str): 
        decord_vr = VideoReader(video_data, ctx=cpu(0))
    else:  
        decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
    
    frame_id_list = []
    total_frames = len(decord_vr)
    timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
    max_second = round(max(timestamps)) + 1
    
    for second in range(max_second):
        closest_num = min(timestamps, key=lambda x: abs(x - second))
        index = timestamps.index(closest_num)
        frame_id_list.append(index)
        if len(frame_id_list) >= num_frames:
            break

    video_data = decord_vr.get_batch(frame_id_list)
    video_data = video_data.permute(3, 0, 1, 2)
    return video_data

def load_model():
    """Loads the pre-trained model and tokenizer with quantization configurations."""
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=TORCH_TYPE,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4"
    )
    
    tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_PATH,
        torch_dtype=TORCH_TYPE,
        trust_remote_code=True,
        quantization_config=quantization_config,
        device_map="auto"
    ).eval()
    
    return model, tokenizer

def predict(prompt, video_data, temperature, model, tokenizer):
    """Generates predictions based on the video and textual prompt."""
    video = load_video(video_data, strategy='chat')
    
    inputs = model.build_conversation_input_ids(
        tokenizer=tokenizer,
        query=prompt,
        images=[video],
        history=[],
        template_version='chat'
    )
    
    inputs = {
        'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
        'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
        'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
        'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
    }
    
    gen_kwargs = {
        "max_new_tokens": 2048,
        "pad_token_id": 128002,
        "top_k": 1,
        "do_sample": False,
        "top_p": 0.1,
        "temperature": temperature,
    }
    
    with torch.no_grad():
        outputs = model.generate(**inputs, **gen_kwargs)
        outputs = outputs[:, inputs['input_ids'].shape[1]:]
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    return response

def get_analysis_prompt(step_number):
    """Constructs the prompt for analyzing manufacturing delays based on the selected step."""
    return f"""You are an AI expert system specializing in manufacturing processes. 
Your task is to analyze video footage from Step {step_number} of a tire manufacturing process and identify any issues based on the observed footage.
- Focus on identifying signs of delay or disruption.
- If no person is visible, it may indicate a staffing issue.
- If a person is seen modifying the tire, they may be repairing defects or handling material issues.
- Carefully examine for mechanical failures, material problems, or human involvement.

Provide an analysis of the video by determining the most likely cause of delay in this step, and explain why this conclusion was reached based on the visual evidence."""

model, tokenizer = load_model()

def inference(video, step_number):
    """Analyzes video to predict possible issues based on the manufacturing step."""
    try:
        if not video:
            return "Please upload a video first."
        
        prompt = get_analysis_prompt(step_number)
        temperature = 0.8
        response = predict(prompt, video, temperature, model, tokenizer)
        
        return response
    except Exception as e:
        return f"An error occurred during analysis: {str(e)}"

def create_interface():
    """Creates the Gradio interface for the Manufacturing Analysis System."""
    with gr.Blocks() as demo:
        gr.Markdown("""
        # Manufacturing Analysis System
        Upload a video of the manufacturing step and select the step number. 
        The system will analyze the video and provide observations.
        """)
        
        with gr.Row():
            with gr.Column():
                video = gr.Video(label="Upload Manufacturing Video", sources=["upload"])
                step_number = gr.Dropdown(
                    choices=[f"Step {i}" for i in range(1, 9)],
                    label="Manufacturing Step"
                )
                analyze_btn = gr.Button("Analyze", variant="primary")
            
            with gr.Column():
                output = gr.Textbox(label="Analysis Result", lines=10)
        
        gr.Examples(
            examples=[
                ["7838_step2_2_eval.mp4", "Step 2"],
                ["7838_step6_2_eval.mp4", "Step 6"]
            ],
            inputs=[video, step_number],
            cache_examples=False
        )
        
        analyze_btn.click(
            fn=inference,
            inputs=[video, step_number],
            outputs=[output]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.queue().launch(share=True)