Spaces:
Runtime error
Runtime error
File size: 8,389 Bytes
5ef4c3f aaa7f8d a01dc67 5ef4c3f 28bcecc 5ef4c3f ce5afd9 79e78be 5ef4c3f 28bcecc 5ef4c3f 28bcecc 5ef4c3f a68fa58 38f0768 aaa7f8d d20364e 79e78be 5ef4c3f a68fa58 79e78be aaa7f8d 79e78be aaa7f8d 79e78be 5ef4c3f d20364e 5ef4c3f 74efc30 d20364e 43eb4dd d20364e 74efc30 5ef4c3f 70f1aa3 5ef4c3f d20364e 70f1aa3 5ef4c3f d20364e 5ef4c3f 43eb4dd d20364e a68fa58 d20364e 43eb4dd 5ef4c3f 43eb4dd 5ef4c3f d20364e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import gradio as gr
import io
import numpy as np
import torch
from decord import cpu, VideoReader, bridge
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig
MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
def get_step_info(step_name):
"""Returns detailed information about a manufacturing step."""
step_details = {
"Step 1": {
"Name": "Bead Insertion",
"Standard Time": "4 seconds",
"Analysis": "Observe the bead placement process. If the insertion exceeds 4 seconds, identify potential issues such as missing beads, technician errors, or machinery malfunction."
},
"Step 2": {
"Name": "Inner Liner Apply",
"Standard Time": "4 seconds",
"Analysis": "Check for manual intervention during the inner layer application. If adjustment is required, it may indicate improper alignment or issues with the layer material."
},
"Step 3": {
"Name": "Ply1 Apply",
"Standard Time": "4 seconds",
"Analysis": "Determine if the technician is manually adjusting the first ply. Manual intervention might suggest improper ply placement or machine misalignment."
},
"Step 4": {
"Name": "Bead Set",
"Standard Time": "8 seconds",
"Analysis": "Observe the bead setting process. Delays may result from bead misalignment, machine pauses, or lack of technician involvement."
},
"Step 5": {
"Name": "Turnup",
"Standard Time": "4 seconds",
"Analysis": "Examine the turnup step for any technician involvement or pauses in machine operation. Reasons for delays might include material misalignment or equipment issues."
},
"Step 6": {
"Name": "Sidewall Apply",
"Standard Time": "14 seconds",
"Analysis": "If a technician is repairing the sidewall, this may indicate material damage or improper initial application. Look for signs of excessive manual handling."
},
"Step 7": {
"Name": "Sidewall Stitching",
"Standard Time": "5 seconds",
"Analysis": "Observe the stitching process. Delays could occur due to machine speed inconsistencies or technician intervention for correction."
},
"Step 8": {
"Name": "Carcass Unload",
"Standard Time": "7 seconds",
"Analysis": "Ensure a technician is present for the carcass unload. If absent, note their return time and identify potential reasons for their absence."
}
}
return step_details.get(step_name, {"Error": "Invalid step name. Please provide a valid step number."})
def load_video(video_data, strategy='chat'):
"""Loads and processes video data into a format suitable for model input."""
bridge.set_bridge('torch')
num_frames = 24
if isinstance(video_data, str):
decord_vr = VideoReader(video_data, ctx=cpu(0))
else:
decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
frame_id_list = []
total_frames = len(decord_vr)
timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
max_second = round(max(timestamps)) + 1
for second in range(max_second):
closest_num = min(timestamps, key=lambda x: abs(x - second))
index = timestamps.index(closest_num)
frame_id_list.append(index)
if len(frame_id_list) >= num_frames:
break
video_data = decord_vr.get_batch(frame_id_list)
video_data = video_data.permute(3, 0, 1, 2)
return video_data
def load_model():
"""Loads the pre-trained model and tokenizer with quantization configurations."""
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=TORCH_TYPE,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=TORCH_TYPE,
trust_remote_code=True,
quantization_config=quantization_config,
device_map="auto"
).eval()
return model, tokenizer
def predict(prompt, video_data, temperature, model, tokenizer):
"""Generates predictions based on the video and textual prompt."""
video = load_video(video_data, strategy='chat')
inputs = model.build_conversation_input_ids(
tokenizer=tokenizer,
query=prompt,
images=[video],
history=[],
template_version='chat'
)
inputs = {
'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
}
gen_kwargs = {
"max_new_tokens": 2048,
"pad_token_id": 128002,
"top_k": 1,
"do_sample": False,
"top_p": 0.1,
"temperature": temperature,
}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def get_analysis_prompt(step_number):
"""Constructs the prompt for analyzing manufacturing delays based on the selected step."""
return f"""You are an AI expert system specializing in manufacturing processes.
Your task is to analyze video footage from Step {step_number} of a tire manufacturing process and identify any issues based on the observed footage.
- Focus on identifying signs of delay or disruption.
- If no person is visible, it may indicate a staffing issue.
- If a person is seen modifying the tire, they may be repairing defects or handling material issues.
- Carefully examine for mechanical failures, material problems, or human involvement.
Provide an analysis of the video by determining the most likely cause of delay in this step, and explain why this conclusion was reached based on the visual evidence."""
model, tokenizer = load_model()
def inference(video, step_number):
"""Analyzes video to predict possible issues based on the manufacturing step."""
try:
if not video:
return "Please upload a video first."
prompt = get_analysis_prompt(step_number)
temperature = 0.8
response = predict(prompt, video, temperature, model, tokenizer)
return response
except Exception as e:
return f"An error occurred during analysis: {str(e)}"
def create_interface():
"""Creates the Gradio interface for the Manufacturing Analysis System."""
with gr.Blocks() as demo:
gr.Markdown("""
# Manufacturing Analysis System
Upload a video of the manufacturing step and select the step number.
The system will analyze the video and provide observations.
""")
with gr.Row():
with gr.Column():
video = gr.Video(label="Upload Manufacturing Video", sources=["upload"])
step_number = gr.Dropdown(
choices=[f"Step {i}" for i in range(1, 9)],
label="Manufacturing Step"
)
analyze_btn = gr.Button("Analyze", variant="primary")
with gr.Column():
output = gr.Textbox(label="Analysis Result", lines=10)
gr.Examples(
examples=[
["7838_step2_2_eval.mp4", "Step 2"],
["7838_step6_2_eval.mp4", "Step 6"]
],
inputs=[video, step_number],
cache_examples=False
)
analyze_btn.click(
fn=inference,
inputs=[video, step_number],
outputs=[output]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.queue().launch(share=True)
|