File size: 6,970 Bytes
5ef4c3f
 
 
 
 
 
 
 
79e78be
5ef4c3f
 
 
 
79e78be
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
28bcecc
5ef4c3f
 
79e78be
 
 
 
 
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28bcecc
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28bcecc
5ef4c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28bcecc
74efc30
 
 
5ef4c3f
74efc30
 
 
 
 
 
 
 
 
 
 
79e78be
07a5f25
 
74efc30
28bcecc
79e78be
 
 
5ef4c3f
79e78be
 
 
 
 
 
 
 
5ef4c3f
 
28bcecc
5ef4c3f
74efc30
 
 
 
 
 
5ef4c3f
 
28bcecc
5ef4c3f
 
 
28bcecc
5ef4c3f
 
 
 
 
 
 
 
74efc30
5ef4c3f
 
 
 
 
 
 
28bcecc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import io
import numpy as np
import torch
from decord import cpu, VideoReader, bridge
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig


MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16


DELAY_REASONS = {
    "Step 1": ["No raw material available", "Person repatching the tire"],
    "Step 2": ["Person repatching the tire", "Lack of raw material"],
    "Step 3": ["Person repatching the tire", "Lack of raw material"],
    "Step 4": ["Person repatching the tire", "Lack of raw material"],
    "Step 5": ["Person repatching the tire", "Lack of raw material"],
    "Step 6": ["Person repatching the tire", "Lack of raw material"],
    "Step 7": ["Person repatching the tire", "Lack of raw material"],
    "Step 8": ["No person available to collect tire", "Person repatching the tire"]
}

def load_video(video_data, strategy='chat'):
    """Loads and processes video data into a format suitable for model input."""
    bridge.set_bridge('torch')
    num_frames = 24
    
    if isinstance(video_data, str): 
        decord_vr = VideoReader(video_data, ctx=cpu(0))
    else:  
        decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
    
    frame_id_list = []
    total_frames = len(decord_vr)
    timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
    max_second = round(max(timestamps)) + 1
    
    for second in range(max_second):
        closest_num = min(timestamps, key=lambda x: abs(x - second))
        index = timestamps.index(closest_num)
        frame_id_list.append(index)
        if len(frame_id_list) >= num_frames:
            break

    video_data = decord_vr.get_batch(frame_id_list)
    video_data = video_data.permute(3, 0, 1, 2)
    return video_data

def load_model():
    """Loads the pre-trained model and tokenizer with quantization configurations."""
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=TORCH_TYPE,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4"
    )
    
    tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_PATH,
        torch_dtype=TORCH_TYPE,
        trust_remote_code=True,
        quantization_config=quantization_config,
        device_map="auto"
    ).eval()
    
    return model, tokenizer

def predict(prompt, video_data, temperature, model, tokenizer):
    """Generates predictions based on the video and textual prompt."""
    video = load_video(video_data, strategy='chat')
    
    inputs = model.build_conversation_input_ids(
        tokenizer=tokenizer,
        query=prompt,
        images=[video],
        history=[],
        template_version='chat'
    )
    
    inputs = {
        'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
        'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
        'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
        'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
    }
    
    gen_kwargs = {
        "max_new_tokens": 2048,
        "pad_token_id": 128002,
        "top_k": 1,
        "do_sample": False,
        "top_p": 0.1,
        "temperature": temperature,
    }
    
    with torch.no_grad():
        outputs = model.generate(**inputs, **gen_kwargs)
        outputs = outputs[:, inputs['input_ids'].shape[1]:]
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    return response

def get_analysis_prompt(step_number, possible_reasons):
    """Constructs the prompt for analyzing delay reasons based on the selected step."""
    return f"""You are an AI expert system specialized in analyzing manufacturing processes and identifying production delays in tire manufacturing. Your role is to accurately classify delay reasons based on visual evidence from production line footage.
Task Context:
You are analyzing video footage from Step {step_number} of a tire manufacturing process where a delay has been detected. Your task is to determine the most likely cause of the delay from the following possible reasons:
{', '.join(possible_reasons)}
Required Analysis:
1. Carefully observe the video for visual cues indicating production interruption
2. Compare observed evidence against each possible delay reason
3. Select the most likely reason based on visual evidence
Please provide your analysis in the following format:
1. Selected Reason: [State the most likely reason from the given options]
2. Visual Evidence: [Describe specific visual cues that support your selection]
3. Reasoning: [Explain why this reason best matches the observed evidence]
4. Alternative Analysis: [Brief explanation of why other possible reasons are less likely]
Important: Base your analysis solely on visual evidence from the video. Focus on concrete, observable details rather than assumptions."""

# Load model globally
model, tokenizer = load_model()

def inference(video, step_number):
    """Analyzes video to predict the most likely cause of delay in the selected manufacturing step."""
    try:
        if not video:
            return "Please upload a video first."
        
        possible_reasons = DELAY_REASONS[step_number]
        prompt = get_analysis_prompt(step_number, possible_reasons)
        temperature = 0.8
        response = predict(prompt, video, temperature, model, tokenizer)
        
        return response
    except Exception as e:
        return f"An error occurred during analysis: {str(e)}"

def create_interface():
    """Creates the Gradio interface for the Manufacturing Delay Analysis System."""
    with gr.Blocks() as demo:
        gr.Markdown("""
        # Manufacturing Delay Analysis System
        Upload a video of the manufacturing step and select the step number. 
        The system will analyze the video and determine the most likely cause of delay.
        """)
        
        with gr.Row():
            with gr.Column():
                video = gr.Video(label="Upload Manufacturing Video", sources=["upload"], value="delay_tyre.mp4")
                step_number = gr.Dropdown(
                    choices=list(DELAY_REASONS.keys()),
                    label="Manufacturing Step",
                    value="Step 8"
                )
                analyze_btn = gr.Button("Analyze Delay", variant="primary")
            
            with gr.Column():
                output = gr.Textbox(label="Analysis Result", lines=10)
        
        analyze_btn.click(
            fn=inference,
            inputs=[video, step_number],
            outputs=[output]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(share=True)