Spaces:
Runtime error
Runtime error
File size: 6,970 Bytes
5ef4c3f 79e78be 5ef4c3f 79e78be 5ef4c3f 28bcecc 5ef4c3f 79e78be 5ef4c3f 28bcecc 5ef4c3f 28bcecc 5ef4c3f 28bcecc 74efc30 5ef4c3f 74efc30 79e78be 07a5f25 74efc30 28bcecc 79e78be 5ef4c3f 79e78be 5ef4c3f 28bcecc 5ef4c3f 74efc30 5ef4c3f 28bcecc 5ef4c3f 28bcecc 5ef4c3f 74efc30 5ef4c3f 28bcecc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import gradio as gr
import io
import numpy as np
import torch
from decord import cpu, VideoReader, bridge
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig
MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
DELAY_REASONS = {
"Step 1": ["No raw material available", "Person repatching the tire"],
"Step 2": ["Person repatching the tire", "Lack of raw material"],
"Step 3": ["Person repatching the tire", "Lack of raw material"],
"Step 4": ["Person repatching the tire", "Lack of raw material"],
"Step 5": ["Person repatching the tire", "Lack of raw material"],
"Step 6": ["Person repatching the tire", "Lack of raw material"],
"Step 7": ["Person repatching the tire", "Lack of raw material"],
"Step 8": ["No person available to collect tire", "Person repatching the tire"]
}
def load_video(video_data, strategy='chat'):
"""Loads and processes video data into a format suitable for model input."""
bridge.set_bridge('torch')
num_frames = 24
if isinstance(video_data, str):
decord_vr = VideoReader(video_data, ctx=cpu(0))
else:
decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
frame_id_list = []
total_frames = len(decord_vr)
timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
max_second = round(max(timestamps)) + 1
for second in range(max_second):
closest_num = min(timestamps, key=lambda x: abs(x - second))
index = timestamps.index(closest_num)
frame_id_list.append(index)
if len(frame_id_list) >= num_frames:
break
video_data = decord_vr.get_batch(frame_id_list)
video_data = video_data.permute(3, 0, 1, 2)
return video_data
def load_model():
"""Loads the pre-trained model and tokenizer with quantization configurations."""
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=TORCH_TYPE,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=TORCH_TYPE,
trust_remote_code=True,
quantization_config=quantization_config,
device_map="auto"
).eval()
return model, tokenizer
def predict(prompt, video_data, temperature, model, tokenizer):
"""Generates predictions based on the video and textual prompt."""
video = load_video(video_data, strategy='chat')
inputs = model.build_conversation_input_ids(
tokenizer=tokenizer,
query=prompt,
images=[video],
history=[],
template_version='chat'
)
inputs = {
'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
}
gen_kwargs = {
"max_new_tokens": 2048,
"pad_token_id": 128002,
"top_k": 1,
"do_sample": False,
"top_p": 0.1,
"temperature": temperature,
}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def get_analysis_prompt(step_number, possible_reasons):
"""Constructs the prompt for analyzing delay reasons based on the selected step."""
return f"""You are an AI expert system specialized in analyzing manufacturing processes and identifying production delays in tire manufacturing. Your role is to accurately classify delay reasons based on visual evidence from production line footage.
Task Context:
You are analyzing video footage from Step {step_number} of a tire manufacturing process where a delay has been detected. Your task is to determine the most likely cause of the delay from the following possible reasons:
{', '.join(possible_reasons)}
Required Analysis:
1. Carefully observe the video for visual cues indicating production interruption
2. Compare observed evidence against each possible delay reason
3. Select the most likely reason based on visual evidence
Please provide your analysis in the following format:
1. Selected Reason: [State the most likely reason from the given options]
2. Visual Evidence: [Describe specific visual cues that support your selection]
3. Reasoning: [Explain why this reason best matches the observed evidence]
4. Alternative Analysis: [Brief explanation of why other possible reasons are less likely]
Important: Base your analysis solely on visual evidence from the video. Focus on concrete, observable details rather than assumptions."""
# Load model globally
model, tokenizer = load_model()
def inference(video, step_number):
"""Analyzes video to predict the most likely cause of delay in the selected manufacturing step."""
try:
if not video:
return "Please upload a video first."
possible_reasons = DELAY_REASONS[step_number]
prompt = get_analysis_prompt(step_number, possible_reasons)
temperature = 0.8
response = predict(prompt, video, temperature, model, tokenizer)
return response
except Exception as e:
return f"An error occurred during analysis: {str(e)}"
def create_interface():
"""Creates the Gradio interface for the Manufacturing Delay Analysis System."""
with gr.Blocks() as demo:
gr.Markdown("""
# Manufacturing Delay Analysis System
Upload a video of the manufacturing step and select the step number.
The system will analyze the video and determine the most likely cause of delay.
""")
with gr.Row():
with gr.Column():
video = gr.Video(label="Upload Manufacturing Video", sources=["upload"], value="delay_tyre.mp4")
step_number = gr.Dropdown(
choices=list(DELAY_REASONS.keys()),
label="Manufacturing Step",
value="Step 8"
)
analyze_btn = gr.Button("Analyze Delay", variant="primary")
with gr.Column():
output = gr.Textbox(label="Analysis Result", lines=10)
analyze_btn.click(
fn=inference,
inputs=[video, step_number],
outputs=[output]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True)
|