Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import numpy as np | |
from PIL import Image | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
MODEL_PATH = "THUDM/cogvlm2-video-llama3-chat" | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16 | |
def load_model(): | |
"""Loads the pre-trained model and tokenizer with quantization configurations.""" | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=TORCH_TYPE, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_PATH, | |
torch_dtype=TORCH_TYPE, | |
trust_remote_code=True, | |
quantization_config=quantization_config, | |
device_map="auto" | |
).eval() | |
return model, tokenizer | |
def predict_image(prompt, image, temperature, model, tokenizer): | |
"""Generates predictions based on the image and textual prompt.""" | |
image = image.convert("RGB") # Ensure image is in RGB format | |
# Convert image to model-expected format | |
inputs = model.build_conversation_input_ids( | |
tokenizer=tokenizer, | |
query=prompt, | |
images=[image], | |
history=[], | |
template_version='chat' | |
) | |
inputs = { | |
'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE), | |
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE), | |
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE), | |
'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]], | |
} | |
gen_kwargs = { | |
"max_new_tokens": 512, | |
"pad_token_id": 128002, | |
"top_k": 1, | |
"do_sample": False, | |
"top_p": 0.1, | |
"temperature": temperature, | |
} | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, **gen_kwargs) | |
outputs = outputs[:, inputs['input_ids'].shape[1]:] | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
model, tokenizer = load_model() | |
def inference(image): | |
"""Generates a description of the input image.""" | |
try: | |
if not image: | |
return "Please upload an image first." | |
prompt = "Describe the image and the components observed in the given input image." | |
temperature = 0.3 | |
response = predict_image(prompt, image, temperature, model, tokenizer) | |
return response | |
except Exception as e: | |
return f"An error occurred during analysis: {str(e)}" | |
def create_interface(): | |
"""Creates the Gradio interface for Image Description System.""" | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# Image Description System | |
Upload an image, and the system will describe the image and its components. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(label="Upload Image", type="pil") | |
analyze_btn = gr.Button("Describe Image", variant="primary") | |
with gr.Column(): | |
output = gr.Textbox(label="Image Description", lines=10) | |
analyze_btn.click( | |
fn=inference, | |
inputs=[image_input], | |
outputs=[output] | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.queue().launch(share=True) | |